cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192136 a(n) = (5*n^2 - 3*n + 2)/2.

Original entry on oeis.org

1, 2, 8, 19, 35, 56, 82, 113, 149, 190, 236, 287, 343, 404, 470, 541, 617, 698, 784, 875, 971, 1072, 1178, 1289, 1405, 1526, 1652, 1783, 1919, 2060, 2206, 2357, 2513, 2674, 2840, 3011, 3187, 3368, 3554, 3745, 3941, 4142, 4348, 4559, 4775, 4996, 5222, 5453, 5689
Offset: 0

Views

Author

Eric Werley, Jun 24 2011

Keywords

Comments

Binomial transform of [1, 1, 5, 0, 0, 0, 0, 0, ...]. - Johannes W. Meijer, Jul 07 2011

Crossrefs

Programs

Formula

a(n) = (5*n^2 - 3*n + 2)/2.
a(n) = 2*a(n-1) - a(n-2) + 5.
a(n) = a(n-1) + 5*n - 4.
a(n) = 5*binomial(n+2,2) - 9*n - 4.
a(n) = A000217(n+1) - A000217(n) + 5*A000217(n-1); triangular numbers. - Johannes W. Meijer, Jul 07 2011
O.g.f.: (1-x+5*x^2)/(1-x)^3.
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: exp(x)*(2 + 2*x + 5*x^2)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)