A192332
For n >= 3, draw a regular n-sided polygon and its n(n-3)/2 diagonals, so there are n(n-1)/2 lines; a(n) is the number of ways to choose a subset of these lines (subsets differing by a rotation are regarded as identical). a(1)=1, a(2)=2 by convention.
Original entry on oeis.org
1, 2, 4, 22, 208, 5560, 299600, 33562696, 7635498336, 3518440564544, 3275345183542208, 6148914696963883712, 23248573454127484129024, 176848577040808821410837120, 2704321280486889389864215362560, 83076749736557243209409446411255936, 5124252113632955685095523500148980125696, 634332307869315502692705867068871886072665600
Offset: 1
From _Gus Wiseman_, Mar 04 2019: (Start)
Inequivalent representatives of the a(1) = 1 through a(4) = 22 graphical necklace edge-sets:
{} {} {} {}
{{12}} {{12}} {{12}}
{{12}{13}} {{13}}
{{12}{13}{23}} {{12}{13}}
{{12}{14}}
{{12}{24}}
{{12}{34}}
{{13}{24}}
{{12}{13}{14}}
{{12}{13}{23}}
{{12}{13}{24}}
{{12}{13}{34}}
{{12}{14}{23}}
{{12}{24}{34}}
{{12}{13}{14}{23}}
{{12}{13}{14}{24}}
{{12}{13}{14}{34}}
{{12}{13}{24}{34}}
{{12}{14}{23}{34}}
{{12}{13}{14}{23}{24}}
{{12}{13}{14}{23}{34}}
{{12}{13}{14}{23}{24}{34}}
(End)
Cf.
A000031,
A000939 (cycle necklaces),
A008965,
A059966,
A060223,
A061417,
A086675 (digraph version),
A184271,
A275527,
A323858,
A324461,
A324463,
A324464.
-
with(numtheory);
f:=proc(n) local t0, t1, d; t0:=0; t1:=divisors(n);
for d in t1 do
if d mod 2 = 0 then t0:=t0+phi(d)*2^(n^2/(2*d))
else t0:=t0+phi(d)*2^(n*(n-1)/(2*d)); fi; od; t0/n; end;
[seq(f(n), n=1..30)];
-
Table[ 1/n* Plus @@ Map[Function[d, EulerPhi[d]*2^((n*(n - Mod[d, 2])/2)/d)], Divisors[n]], {n, 1, 20}] (* Olivier Gérard, Aug 27 2011 *)
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&]],{n,0,5}] (* Gus Wiseman, Mar 04 2019 *)
-
a(n) = sumdiv(n, d, if (d%2, eulerphi(d)*2^(n*(n-1)/(2*d)), eulerphi(d)*2^(n^2/(2*d))))/n; \\ Michel Marcus, Mar 08 2019
A324461
Number of simple graphs with n vertices and distinct rotations.
Original entry on oeis.org
1, 1, 0, 6, 48, 1020, 32232, 2097144, 268369920, 68719472640, 35184338533920, 36028797018963936, 73786976226114539520, 302231454903657293676480, 2475880078570197599844819072, 40564819207303340847860140736640, 1329227995784915854457062986570792960
Offset: 0
Cf.
A000088,
A000740,
A003436,
A006125,
A027375,
A192314,
A192332,
A306669,
A306715,
A323860,
A323864,
A323867,
A324462 (covering case),
A324463,
A324464.
-
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]&]],{n,0,5}]
-
a(n)={if(n==0, 1, sumdiv(n, d, moebius(d)*2^(n*(n/d-1)/2 + n*(d\2)/d)))} \\ Andrew Howroyd, Aug 15 2019
-
from sympy import mobius, divisors
def A324461(n): return sum(mobius(m:=n//d)<<(n*(d-1)>>1)+d*(m>>1) for d in divisors(n,generator=True)) if n else 1 # Chai Wah Wu, Jul 03 2024
A191563
For n >= 3, draw a regular n-sided polygon and its n(n-3)/2 diagonals, so there are n(n-1)/2 lines; a(n) is the number of ways to choose a subset of these lines (subsets differing by a rotation or reflection are regarded as identical). a(1)=1, a(2)=2 by convention.
Original entry on oeis.org
1, 2, 4, 19, 136, 3036, 151848, 16814116, 3818273456, 1759237059488, 1637673128642016, 3074457382841680224, 11624286729262765320064, 88424288520685885682129216, 1352160640243480723729126645248, 41538374868278630828076760060403776, 2562126056816477844908944991509312669696
Offset: 1
-
with(numtheory);
f:=proc(n) local t0,t1,d; t0:=0;
t1:=divisors(n);
for d in t1 do
if d mod 2 = 0 then t0:=t0+phi(d)*2^(n^2/(2*d))
else t0:=t0+phi(d)*2^(n*(n-1)/(2*d)); fi;
od;
if n mod 2 = 0 then t0:=t0+n*2^(n^2/4)
else t0:=t0+n*2^((n^2-1)/4); fi;
t0/(2*n); end;
s1:=[seq(f(n),n=1..20)];
-
Table[(2^((n^2-Mod[n,2])/4) + 1/n*(Plus@@ Map[Function[d,EulerPhi[d]*2^((n*(n-Mod[d,2])/2)/d)],Divisors[n]]))/2, {n,1,20}] (* From Olivier Gérard, Aug 27 2011 *)
A192313
Constant term of the reduction of n-th polynomial at A157751 by x^2->x+1.
Original entry on oeis.org
1, 2, 5, 13, 34, 91, 247, 680, 1893, 5319, 15056, 42867, 122605, 351898, 1012729, 2920521, 8435362, 24392655, 70599403, 204472264
Offset: 1
The first five polynomials at A157751 and their reductions are as follows:
p0(x)=1 -> 1
p1(x)=2+x -> 2+x
p2(x)=4+2x+x^2 -> 5+3x
p3(x)=8+4x+4x^2+x^3 -> 13+10x
p4(x)=16+8x+12x^2+4x^3+x^4 -> 34+31x.
From these, we read
A192313=(1,2,5,13,34,...) and A192314=(0,1,3,19,31,...)
-
q[x_] := x + 1;
p[0, x_] := 1;
p[n_, x_] := (x + 1)*p[n - 1, x] + p[n - 1, -x] /; n > 0 (* A157751 *)
Table[Simplify[p[n, x]], {n, 0, 5}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 20}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 20}]
(* A192313 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 20}]
(* A192337 *)
Showing 1-4 of 4 results.
Comments