A192328 Numbers of the form 20*k+7 which are three times a square.
27, 147, 507, 867, 1587, 2187, 3267, 4107, 5547, 6627, 8427, 9747, 11907, 13467, 15987, 17787, 20667, 22707, 25947, 28227, 31827, 34347, 38307, 41067, 45387, 48387, 53067, 56307, 61347, 64827, 70227, 73947, 79707, 83667, 89787, 93987
Offset: 1
References
- "Supplemento al Periodico di Matematica", Raffaello Giusti Editore (Livorno) - Mar 1901 - p. 75 (Problem 286 and its generalization, G. Cardoso-Laynes).
Links
- Mohammed Yaseen, Table of n, a(n) for n = 1..10000 (first 1000 terms from Bruno Berselli)
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
[m: m in [7..10^5 by 20] | IsSquare(m/3)];
-
Maple
select(t -> issqr(t/3), [seq(20*i+7,i=1..10000,3)]); # Robert Israel, Apr 28 2023
-
Mathematica
Select[20 Range[5000] + 7, IntegerQ[Sqrt[#/3]] &] (* or *) LinearRecurrence[{1,2,-2,-1,1}, {27,147,507,867,1587}, 40] (* Harvey P. Dale, Jul 06 2011 *) CoefficientList[Series[3 (9 + 40 x + 102 x^2 + 40 x^3 + 9 x^4) / ((1 + x)^2 (1 - x)^3), {x, 0, 35}], x] (* Vincenzo Librandi, Aug 19 2013 *)
-
PARI
for(k=0, 5*10^3, m=20*k+7; if(issquare(m/3), print1(m",")));
-
PARI
a(n)=my(m=n--\4); 1200*m^2+[360*m+27, 840*m+147, 1560*m+507, 2040*m+867][n%4+1] \\ Charles R Greathouse IV, Jun 29 2011
Formula
Extensions
Offset corrected by Mohammed Yaseen, Apr 27 2023
Comments