cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192328 Numbers of the form 20*k+7 which are three times a square.

Original entry on oeis.org

27, 147, 507, 867, 1587, 2187, 3267, 4107, 5547, 6627, 8427, 9747, 11907, 13467, 15987, 17787, 20667, 22707, 25947, 28227, 31827, 34347, 38307, 41067, 45387, 48387, 53067, 56307, 61347, 64827, 70227, 73947, 79707, 83667, 89787, 93987
Offset: 1

Views

Author

Bruno Berselli, Jun 28 2011

Keywords

Comments

Text of the theorem in the paper mentioned in References: The necessary and sufficient condition so that a number of the form 20*k+7 is three times a square is that k is of the form 3*h*(5*h+3)+1 or 3*h*(5*h+7)+7.
A119617 gives the values of k.
A080512*120 gives the first differences.

References

  • "Supplemento al Periodico di Matematica", Raffaello Giusti Editore (Livorno) - Mar 1901 - p. 75 (Problem 286 and its generalization, G. Cardoso-Laynes).

Crossrefs

Programs

  • Magma
    [m: m in [7..10^5 by 20] | IsSquare(m/3)];
    
  • Maple
    select(t -> issqr(t/3), [seq(20*i+7,i=1..10000,3)]); # Robert Israel, Apr 28 2023
  • Mathematica
    Select[20 Range[5000] + 7, IntegerQ[Sqrt[#/3]] &] (* or *) LinearRecurrence[{1,2,-2,-1,1}, {27,147,507,867,1587}, 40] (* Harvey P. Dale, Jul 06 2011 *)
    CoefficientList[Series[3 (9 + 40 x + 102 x^2 + 40 x^3 + 9 x^4) / ((1 + x)^2 (1 - x)^3), {x, 0, 35}], x] (* Vincenzo Librandi, Aug 19 2013 *)
  • PARI
    for(k=0, 5*10^3, m=20*k+7; if(issquare(m/3), print1(m",")));
    
  • PARI
    a(n)=my(m=n--\4); 1200*m^2+[360*m+27, 840*m+147, 1560*m+507, 2040*m+867][n%4+1] \\ Charles R Greathouse IV, Jun 29 2011

Formula

G.f.: 3*x*(9 + 40*x + 102*x^2 + 40*x^3 + 9*x^4)/((1 + x)^2*(1 - x)^3).
a(n) = 3*((10*(n-1) + (-1)^(n-1) + 5)/2)^2.
a(n) = a(-n-1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
Sum_{i=1..n} a(i) = n*(50*(n-1)*(n+1) + 15*(-1)^(n-1) + 39)/2.
a(n) = 3*A020742(A047218(n))^2.

Extensions

Offset corrected by Mohammed Yaseen, Apr 27 2023