A192364 Number of lattice paths from (0,0) to (n,n) using steps (0,1),(0,2),(1,0),(2,0),(1,1).
1, 3, 21, 157, 1239, 10047, 82951, 693603, 5854581, 49778997, 425712429, 3657968097, 31555053921, 273109567797, 2370474720369, 20625186298269, 179841473895447, 1571088267426447, 13747953837604959, 120482775658910763, 1057293764707074027, 9289536349244758791, 81709329486947791419
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A091533.
Programs
-
Mathematica
FullSimplify[CoefficientList[Series[(3-6*x+Sqrt[-1+4*x*(9*x-11)+4*Sqrt[1-x]*Sqrt[5+4*x]*Sqrt[9*x-1]])/(Sqrt[10+8*x]*Sqrt[(1-x)*(1-9*x)]*(4*x*(9*x-11)-1+4*Sqrt[1-x]*Sqrt[5+4*x]*Sqrt[9*x-1])^(1/4)), {x, 0, 10}], x]]
-
PARI
/* same as in A092566 but use */ steps=[[0,1], [0,2], [1,0], [2,0], [1,1]]; /* Joerg Arndt, Jun 30 2011 */
Formula
From Vaclav Kotesovec, Oct 24 2012: (Start)
G.f.: (3 - 6*x + sqrt(-1 + 4*x*(9*x-11) + 4*sqrt(1-x)*sqrt(5+4*x)*sqrt(9*x-1))) / (sqrt(10+8*x)*sqrt((1-x)*(1-9*x))*(4*x*(9*x-11)-1+4*sqrt(1-x)*sqrt(5+4*x)*sqrt(9*x-1))^(1/4))
D-finite with recurrence: 15*(n-1)*n*a(n) = (n-1)*(133*n-54)*a(n-1) + (31*n^2 - 177*n + 224)*a(n-2) - (113*n^2 - 295*n + 144)*a(n-3) - 18*(n-3)*(2*n-5)*a(n-4)
a(n) ~ 3^(2*n+3/2)/(2*sqrt(14*Pi*n))
(End)
a(n) = A091533(2*n,n) for n >= 0. - Paul D. Hanna, Dec 11 2018
a(n) = [x^n*y^n] 1/(1 - x - y - x^2 - x*y - y^2) for n >= 0. - Paul D. Hanna, Dec 11 2018
Extensions
Terms > 425712429 by Joerg Arndt, Jun 30 2011