cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192364 Number of lattice paths from (0,0) to (n,n) using steps (0,1),(0,2),(1,0),(2,0),(1,1).

Original entry on oeis.org

1, 3, 21, 157, 1239, 10047, 82951, 693603, 5854581, 49778997, 425712429, 3657968097, 31555053921, 273109567797, 2370474720369, 20625186298269, 179841473895447, 1571088267426447, 13747953837604959, 120482775658910763, 1057293764707074027, 9289536349244758791, 81709329486947791419
Offset: 0

Views

Author

Eric Werley, Jun 29 2011

Keywords

Crossrefs

Cf. A091533.

Programs

  • Mathematica
    FullSimplify[CoefficientList[Series[(3-6*x+Sqrt[-1+4*x*(9*x-11)+4*Sqrt[1-x]*Sqrt[5+4*x]*Sqrt[9*x-1]])/(Sqrt[10+8*x]*Sqrt[(1-x)*(1-9*x)]*(4*x*(9*x-11)-1+4*Sqrt[1-x]*Sqrt[5+4*x]*Sqrt[9*x-1])^(1/4)), {x, 0, 10}], x]]
  • PARI
    /* same as in A092566 but use */
    steps=[[0,1], [0,2], [1,0], [2,0], [1,1]];
    /* Joerg Arndt, Jun 30 2011 */

Formula

From Vaclav Kotesovec, Oct 24 2012: (Start)
G.f.: (3 - 6*x + sqrt(-1 + 4*x*(9*x-11) + 4*sqrt(1-x)*sqrt(5+4*x)*sqrt(9*x-1))) / (sqrt(10+8*x)*sqrt((1-x)*(1-9*x))*(4*x*(9*x-11)-1+4*sqrt(1-x)*sqrt(5+4*x)*sqrt(9*x-1))^(1/4))
D-finite with recurrence: 15*(n-1)*n*a(n) = (n-1)*(133*n-54)*a(n-1) + (31*n^2 - 177*n + 224)*a(n-2) - (113*n^2 - 295*n + 144)*a(n-3) - 18*(n-3)*(2*n-5)*a(n-4)
a(n) ~ 3^(2*n+3/2)/(2*sqrt(14*Pi*n))
(End)
a(n) = A091533(2*n,n) for n >= 0. - Paul D. Hanna, Dec 11 2018
a(n) = [x^n*y^n] 1/(1 - x - y - x^2 - x*y - y^2) for n >= 0. - Paul D. Hanna, Dec 11 2018

Extensions

Terms > 425712429 by Joerg Arndt, Jun 30 2011