cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192365 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(2,0),(0,1),(0,2),(1,1),(2,2).

Original entry on oeis.org

1, 3, 22, 165, 1327, 10950, 92045, 783579, 6733966, 58294401, 507579829, 4440544722, 39000863629, 343677908223, 3037104558574, 26904952725061, 238854984979423, 2124492829796598, 18927927904130617, 168888613467092895, 1508973226894216106, 13498652154574126523, 120886709687492946083
Offset: 0

Views

Author

Eric Werley, Jun 29 2011

Keywords

Comments

Diagonal of the rational function 1 / (1 - x - y - x^2 - y^2 - x*y - (x*y)^2). - Ilya Gutkovskiy, Apr 23 2025

Programs

  • Maple
    p4 := x^4+6*x^3+7*x^2-10*x+1;
    ogf := sqrt( ((2*x^2+6*x-3)/p4 - 2/sqrt(p4))/(4*x^2-4*x-5) );
    series(ogf, x=0, 30);  # Mark van Hoeij, Apr 16 2013
    # second Maple program:
    b:= proc(x, y) option remember; `if`(min(x, y)<0, 0,
          `if`(max(x, y)=0, 1, add(b(x, y-j)+
             b(x-j, y)+b(x-j, y-j), j=1..2)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 16 2017
  • Mathematica
    b[x_, y_] := b[x, y] = If[Min[x, y] < 0, 0, If[Max[x, y] == 0, 1, Sum[b[x, y - j] + b[x - j, y] + b[x - j, y - j], {j, 1, 2}]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 23 2017, after Alois P. Heinz *)
  • PARI
    /* same as in A092566 but use */
    steps=[[0,1], [0,2], [1,0], [2,0], [1,1], [2,2]];
    /* Joerg Arndt, Jun 30 2011 */

Formula

G.f.: sqrt( ((2*x^2+6*x-3)/p4 - 2/sqrt(p4))/(4*x^2-4*x-5) ) where p4 = x^4+6*x^3+7*x^2-10*x+1. - Mark van Hoeij, Apr 16 2013

Extensions

Terms > 507579829 from Joerg Arndt, Jun 30 2011