A192365 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(2,0),(0,1),(0,2),(1,1),(2,2).
1, 3, 22, 165, 1327, 10950, 92045, 783579, 6733966, 58294401, 507579829, 4440544722, 39000863629, 343677908223, 3037104558574, 26904952725061, 238854984979423, 2124492829796598, 18927927904130617, 168888613467092895, 1508973226894216106, 13498652154574126523, 120886709687492946083
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
p4 := x^4+6*x^3+7*x^2-10*x+1; ogf := sqrt( ((2*x^2+6*x-3)/p4 - 2/sqrt(p4))/(4*x^2-4*x-5) ); series(ogf, x=0, 30); # Mark van Hoeij, Apr 16 2013 # second Maple program: b:= proc(x, y) option remember; `if`(min(x, y)<0, 0, `if`(max(x, y)=0, 1, add(b(x, y-j)+ b(x-j, y)+b(x-j, y-j), j=1..2))) end: a:= n-> b(n$2): seq(a(n), n=0..30); # Alois P. Heinz, May 16 2017
-
Mathematica
b[x_, y_] := b[x, y] = If[Min[x, y] < 0, 0, If[Max[x, y] == 0, 1, Sum[b[x, y - j] + b[x - j, y] + b[x - j, y - j], {j, 1, 2}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 23 2017, after Alois P. Heinz *)
-
PARI
/* same as in A092566 but use */ steps=[[0,1], [0,2], [1,0], [2,0], [1,1], [2,2]]; /* Joerg Arndt, Jun 30 2011 */
Formula
G.f.: sqrt( ((2*x^2+6*x-3)/p4 - 2/sqrt(p4))/(4*x^2-4*x-5) ) where p4 = x^4+6*x^3+7*x^2-10*x+1. - Mark van Hoeij, Apr 16 2013
Extensions
Terms > 507579829 from Joerg Arndt, Jun 30 2011
Comments