A276493
Perfect numbers whose sum of prime factors is prime.
Original entry on oeis.org
6, 28, 8128, 14474011154664524427946373126085988481573677491474835889066354349131199152128
Offset: 1
a(1) = (2^2-1)*2^(2-1) = 6 because both 2^2-1 = 3 and 2^2+2*2-3 = 5 are primes.
a(2) = (2^3-1)*2^(3-1) = 28 because both 2^3-1 = 7 and 2^3+2*3-3 = 11 are primes.
a(3) = (2^7-1)*2^(7-1) = 8128 because both 2^7-1 = 127 and 2^7+2*7-3 = 139 are primes.
-
[(2^p-1)*2^(p-1): p in PrimesUpTo(2000) | IsPrime(2^p+2*p-3)];
-
[(2^n-1)*2^(n-1): n in [1..200] | IsPrime(n) and IsPrime(2^n-1) and IsPrime(2^n+2*n-3)]; // Vincenzo Librandi, Sep 06 2016
-
A276493:=n->`if`(isprime(n) and isprime(2^n-1) and isprime(2^n+2*n-3), (2^n-1)*2^(n-1), NULL): seq(A276493(n), n=1..10^3); # Wesley Ivan Hurt, Sep 07 2016
-
Select[PerfectNumber[Range[12]],PrimeQ[Total[Flatten[Table[#[[1]],#[[2]]]&/@ FactorInteger[#]]]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 06 2020 *)
A276511
Primes that are equal to the sum of the prime factors of some perfect number.
Original entry on oeis.org
5, 11, 139, 170141183460469231731687303715884105979
Offset: 1
a(1) = 5 because 2^2-1 = 3 and 2^2+2*2-3 = 5 are primes,
a(2) = 11 because 2^3-1 = 7 and 2^3+2*3-3 = 11 are primes,
a(3) = 139 because 2^7-1 = 127 and 2^7+2*7-3 = 139 are primes.
-
[2^n+2*n-3: n in [1..200] | IsPrime(2^n-1) and IsPrime(2^n+2*n-3)];
-
A276511:=n->`if`(isprime(2^n-1) and isprime(2^n+2*n-3), 2^n+2*n-3, NULL): seq(A276511(n), n=1..10^3); # Wesley Ivan Hurt, Sep 07 2016
A192764
Numbers k such that 2^(k-1)+2*k-1 is a prime number.
Original entry on oeis.org
1, 2, 6, 14, 66, 86, 230, 2006, 3876, 3920, 5418, 8820, 11900, 16669, 19446, 28243, 33408, 37919, 40595
Offset: 1
-
Select[Range[4000], PrimeQ[2^(# - 1) + 2# - 1] &] (* Alonso del Arte, Jul 09 2011 *)
-
for(n=1,10^6,if(ispseudoprime(2^(n-1)+2*n-1),print1(n,", ")));
A276663
Sum of primes dividing n-th perfect number (with repetition).
Original entry on oeis.org
5, 11, 39, 139, 8215, 131103, 524323, 2147483707, 2305843009213694071, 618970019642690137449562287, 162259276829213363391578010288339, 170141183460469231731687303715884105979
Offset: 1
39 is in this sequence because 39 - 2^(5 - 1) = 31 = 2^5 - 1 and 31 is prime.
-
Table[Total[Times@@@FactorInteger[PerfectNumber[n]]],{n,15}] (* Harvey P. Dale, Sep 22 2019 *)
-
\\ Ochem & Rao: no odd perfect numbers below 10^1500
forprime(p=2,2281, if(ispseudoprime(t=2^p-1), print1(2^p+2*p-3", "))) \\ Charles R Greathouse IV, Sep 18 2016
Showing 1-4 of 4 results.
Comments