cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A192441 Coefficient of x^(2*n) in the expansion of (1 + x^3 + x^4)^n.

Original entry on oeis.org

1, 0, 2, 3, 6, 30, 35, 210, 350, 1344, 3402, 9240, 29139, 72072, 231660, 603603, 1814670, 5095376, 14507324, 42401502, 118974466, 349305120, 990073812, 2877816304, 8272748675, 23852438880, 69116072950, 198980348385, 577566713520, 1667118322590, 4834810467135
Offset: 0

Views

Author

Joerg Arndt, Jul 01 2011

Keywords

Crossrefs

Programs

  • Magma
    P:=PolynomialRing(Integers()); [ Coefficients((1+x^3+x^4)^n)[ 2*n+1 ]: n in [0..30] ]; // Bruno Berselli, Jul 01 2011
  • Maxima
    makelist((coeff(expand((1+x^3+x^4)^n), x, 2*n)), n, 0, 30); /* Bruno Berselli, Jul 01 2011 */
    
  • PARI
    a(n)=polcoeff((1+x^3+x^4)^n,2*n);
    

Formula

a(n) = Sum_{k=ceiling(n/2)..floor(2*n/3)} binomial(n,k)*binomial(k,2*n-3*k). - R. J. Mathar, Jul 01 2011

A192442 Coefficient of x^n in the expansion of (1+x^3+x^4)^n.

Original entry on oeis.org

1, 0, 0, 3, 4, 0, 15, 42, 28, 84, 360, 495, 715, 2860, 6006, 8463, 23660, 61880, 104244, 220932, 596904, 1201560, 2313003, 5753979, 12983707, 25477100, 57557500, 135227235, 280913490, 600900300, 1395727515, 3046800900, 6447717900, 14540497920, 32572229976, 69844899432
Offset: 0

Views

Author

Joerg Arndt, Jul 01 2011

Keywords

Crossrefs

Programs

  • Magma
    P:=PolynomialRing(Integers()); [ Coefficients((1+x^3+x^4)^n)[ n+1 ]: n in [0..40] ]; // Vincenzo Librandi, Sep 10 2011
    
  • Mathematica
    Table[Coefficient[(1+x^3+x^4)^n, x, n],{n,0,20}] (* Vaclav Kotesovec, Jun 15 2014 *)
  • Maxima
    makelist((coeff(expand((1+x^3+x^4)^n), x, n)), n, 0, 40); /* Vincenzo Librandi, Sep 10 2011 */
    
  • Maxima
    a(n):=sum(binomial(j,n-3*j)*binomial(n,j),j,floor(n/4),floor(n/3)); /* Vladimir Kruchinin, Jun 14 2014 */
  • PARI
    a(n)=polcoeff((1+x^3+x^4)^n,n);
    
  • PARI
    {a(n)=local(G=(1/x)*serreverse(x/(1+x^3+x^4 +x^2*O(x^n))));polcoeff(1+x*G'/G, n)} \\ Paul D. Hanna, Jun 14 2014
    for(n=0,30,print1(a(n),", "))
    

Formula

Recurrence: 3*n*(3*n-2)*(3*n-1)*(115668*n^3 - 650916*n^2 + 1167723*n - 673723)*a(n) = 2*(n-1)*(231336*n^5 - 1417500*n^4 + 3231306*n^3 - 3349145*n^2 + 1574119*n - 264960)*a(n-1) - 6*(n-2)*(n-1)*(115668*n^4 - 535248*n^3 + 861921*n^2 - 529129*n + 122640)*a(n-2) + 24*(n-2)*(n-1)*(925344*n^4 - 4744656*n^3 + 7608276*n^2 - 4369418*n + 755115)*a(n-3) + 229*(n-3)*(n-2)*(n-1)*(115668*n^3 - 303912*n^2 + 212895*n - 41248)*a(n-4). - Vaclav Kotesovec, Apr 21 2014
a(n) = sum(j=floor(n/4)..floor(n/3), binomial(j,n-3*j)*binomial(n,j)). - Vladimir Kruchinin, Jun 14 2014
G.f.: 1 + x*G'(x)/G(x) where G(x) = 1 + x^3*G(x)^3 + x^4*G(x)^4 = (1/x)*Series_Reversion(x/(1+x^3+x^4)). - Paul D. Hanna, Jun 14 2014
Showing 1-2 of 2 results.