cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192849 Molecular topological indices of the triangular graphs.

Original entry on oeis.org

0, 0, 24, 240, 1080, 3360, 8400, 18144, 35280, 63360, 106920, 171600, 264264, 393120, 567840, 799680, 1101600, 1488384, 1976760, 2585520, 3335640, 4250400, 5355504, 6679200, 8252400, 10108800, 12285000, 14820624, 17758440, 21144480
Offset: 1

Views

Author

Eric W. Weisstein, Jul 11 2011

Keywords

Comments

Triangular graphs are defined for n>=2; extended to n=1 using closed form.

Crossrefs

Programs

  • GAP
    List([1..40], n -> n*(n^2 -1)*(n-2)^2); # G. C. Greubel, Jan 05 2019
  • Haskell
    a192849 n = if n < 3 then 0 else a245334 (n + 1) 4
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Magma
    [n*(n^2 -1)*(n-2)^2: n in [1..40]]; // G. C. Greubel, Jan 05 2019
    
  • Maple
    [n*(n^2-1)*(n-2)^2$n=1..40]; # Muniru A Asiru, Jan 05 2019
  • Mathematica
    Table[n*(n^2-1)*(n-2)^2, {n,1,40}] (* G. C. Greubel, Jan 05 2019 *)
  • PARI
    vector(40, n, n*(n^2 -1)*(n-2)^2) \\ G. C. Greubel, Jan 05 2019
    
  • Sage
    [n*(n^2 -1)*(n-2)^2 for n in (1..40)] # G. C. Greubel, Jan 05 2019
    

Formula

a(n) = n*(n^2 - 1)*(n-2)^2.
a(n) = 24*A027800(n-3).
G.f.: 24*x^3*(4*x+1)/(x-1)^6. - Colin Barker, Aug 07 2012
a(n) = A245334(n+1,4), n > 2. - Reinhard Zumkeller, Aug 31 2014
E.g.f.: x^3*(4 + 6*x + x^2)*exp(x). - G. C. Greubel, Jan 05 2019
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=3} 1/a(n) = Pi^2/36 - 49/216.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi^2/72 - 10*log(2)/9 + 145/216. (End)