A192849 Molecular topological indices of the triangular graphs.
0, 0, 24, 240, 1080, 3360, 8400, 18144, 35280, 63360, 106920, 171600, 264264, 393120, 567840, 799680, 1101600, 1488384, 1976760, 2585520, 3335640, 4250400, 5355504, 6679200, 8252400, 10108800, 12285000, 14820624, 17758440, 21144480
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- G. D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann. Math., 14:42-4. See 2nd polynomial p. 5.
- Eric Weisstein's World of Mathematics, Molecular Topological Index.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
GAP
List([1..40], n -> n*(n^2 -1)*(n-2)^2); # G. C. Greubel, Jan 05 2019
-
Haskell
a192849 n = if n < 3 then 0 else a245334 (n + 1) 4 -- Reinhard Zumkeller, Aug 31 2014
-
Magma
[n*(n^2 -1)*(n-2)^2: n in [1..40]]; // G. C. Greubel, Jan 05 2019
-
Maple
[n*(n^2-1)*(n-2)^2$n=1..40]; # Muniru A Asiru, Jan 05 2019
-
Mathematica
Table[n*(n^2-1)*(n-2)^2, {n,1,40}] (* G. C. Greubel, Jan 05 2019 *)
-
PARI
vector(40, n, n*(n^2 -1)*(n-2)^2) \\ G. C. Greubel, Jan 05 2019
-
Sage
[n*(n^2 -1)*(n-2)^2 for n in (1..40)] # G. C. Greubel, Jan 05 2019
Formula
a(n) = n*(n^2 - 1)*(n-2)^2.
a(n) = 24*A027800(n-3).
G.f.: 24*x^3*(4*x+1)/(x-1)^6. - Colin Barker, Aug 07 2012
a(n) = A245334(n+1,4), n > 2. - Reinhard Zumkeller, Aug 31 2014
E.g.f.: x^3*(4 + 6*x + x^2)*exp(x). - G. C. Greubel, Jan 05 2019
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=3} 1/a(n) = Pi^2/36 - 49/216.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi^2/72 - 10*log(2)/9 + 145/216. (End)
Comments