cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192978 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.

Original entry on oeis.org

0, 1, 4, 12, 29, 62, 122, 227, 406, 706, 1203, 2020, 3356, 5533, 9072, 14816, 24129, 39218, 63654, 103215, 167250, 270886, 438599, 709992, 1149144, 1859737, 3009532, 4869972, 7880261, 12751046, 20632178, 33384155, 54017326, 87402538
Offset: 0

Views

Author

Clark Kimberling, Jul 13 2011

Keywords

Comments

The titular polynomials are defined recursively: p(n,x) = x*p(n-1,x) + 1 + n + n^2, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232 and A192744.
Define a triangle by T(n,0) = n*(n+1) + 1, T(n,n)=1, and T(r,c) = T(r-1,c-1) + T(r-2,c-1). The sum of the terms in row(n) is a(n+1). - J. M. Bergot, Apr 14 2013

Crossrefs

Programs

  • GAP
    List([0..40], n-> Lucas(1,-1, n+5)[2] -(n^2+5*n+11)); # G. C. Greubel, Jul 24 2019
  • Magma
    [Lucas(n+5)-(n^2+5*n+11): n in [0..40]]; // G. C. Greubel, Jul 24 2019
    
  • Mathematica
    (* First program *)
    q = x^2; s = x + 1; z = 40;
    p[0, x]:= 1;
    p[n_, x_]:= x*p[n-1, x] +n^2 +n +1;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A027181 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192978 *)
    (* Additional programs *)
    CoefficientList[Series[x*(1+x^2)/((1-x-x^2)*(1-x)^3), {x, 0, 40}], x] (* Vincenzo Librandi, May 13 2014 *)
    Table[LucasL[n+5] -(n^2+5*n+11), {n,0,40}] (* G. C. Greubel, Jul 24 2019 *)
    LinearRecurrence[{4,-5,1,2,-1},{0,1,4,12,29},40] (* Harvey P. Dale, Dec 24 2023 *)
  • PARI
    vector(40, n, n--; f=fibonacci; f(n+6)+f(n+4) -(n^2+5*n+11)) \\ G. C. Greubel, Jul 24 2019
    
  • Sage
    [lucas_number2(n+5, 1,-1) -(n^2+5*n+11) for n in (0..40)] # G. C. Greubel, Jul 24 2019
    

Formula

a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
G.f.: x*(1+x^2)/((1-x-x^2)*(1-x)^3). - R. J. Mathar, May 12 2014
a(n) = Lucas(n+5) - n*(n+5) - 11. - Ehren Metcalfe, Jul 13 2019
From Stefano Spezia, Jul 13 2019: (Start)
a(n) = (1/2)*(-22 + (11 - 5*sqrt(5))*((1/2)*(1 - sqrt(5)))^n + 11*((1/2)* (1 + sqrt(5)))^n + 5*sqrt(5)*((1/2)*(1 + sqrt(5)))^n - 10*n - 2*n^2).
E.g.f.: (1/2)*(2 + sqrt(5))*((-47 + 21*sqrt(5))*exp(-(1/2)*(-1 + sqrt(5))*x) + (3 + sqrt(5))*exp((1/2)*(1 + sqrt(5))*x) - 2*(-2 + sqrt(5))*exp(x)*(11 + 6*x + x^2)).
(End)