A192978 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
0, 1, 4, 12, 29, 62, 122, 227, 406, 706, 1203, 2020, 3356, 5533, 9072, 14816, 24129, 39218, 63654, 103215, 167250, 270886, 438599, 709992, 1149144, 1859737, 3009532, 4869972, 7880261, 12751046, 20632178, 33384155, 54017326, 87402538
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Programs
-
GAP
List([0..40], n-> Lucas(1,-1, n+5)[2] -(n^2+5*n+11)); # G. C. Greubel, Jul 24 2019
-
Magma
[Lucas(n+5)-(n^2+5*n+11): n in [0..40]]; // G. C. Greubel, Jul 24 2019
-
Mathematica
(* First program *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] +n^2 +n +1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A027181 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192978 *) (* Additional programs *) CoefficientList[Series[x*(1+x^2)/((1-x-x^2)*(1-x)^3), {x, 0, 40}], x] (* Vincenzo Librandi, May 13 2014 *) Table[LucasL[n+5] -(n^2+5*n+11), {n,0,40}] (* G. C. Greubel, Jul 24 2019 *) LinearRecurrence[{4,-5,1,2,-1},{0,1,4,12,29},40] (* Harvey P. Dale, Dec 24 2023 *)
-
PARI
vector(40, n, n--; f=fibonacci; f(n+6)+f(n+4) -(n^2+5*n+11)) \\ G. C. Greubel, Jul 24 2019
-
Sage
[lucas_number2(n+5, 1,-1) -(n^2+5*n+11) for n in (0..40)] # G. C. Greubel, Jul 24 2019
Formula
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
G.f.: x*(1+x^2)/((1-x-x^2)*(1-x)^3). - R. J. Mathar, May 12 2014
a(n) = Lucas(n+5) - n*(n+5) - 11. - Ehren Metcalfe, Jul 13 2019
From Stefano Spezia, Jul 13 2019: (Start)
a(n) = (1/2)*(-22 + (11 - 5*sqrt(5))*((1/2)*(1 - sqrt(5)))^n + 11*((1/2)* (1 + sqrt(5)))^n + 5*sqrt(5)*((1/2)*(1 + sqrt(5)))^n - 10*n - 2*n^2).
E.g.f.: (1/2)*(2 + sqrt(5))*((-47 + 21*sqrt(5))*exp(-(1/2)*(-1 + sqrt(5))*x) + (3 + sqrt(5))*exp((1/2)*(1 + sqrt(5))*x) - 2*(-2 + sqrt(5))*exp(x)*(11 + 6*x + x^2)).
(End)
Comments