A193090 Digital roots of the nonzero pentagonal numbers.
1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8
Offset: 1
Examples
The sixth nonzero pentagonal number is A000326(6) = 51, which has digital root 5 + 1 = 6. Hence a(6) = 6.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1).
Programs
-
Mathematica
DigitalRoot[n_]:=FixedPoint[Plus@@IntegerDigits[#]&,n]; DigitalRoot[1/2 # (3#-1)]&/@Range[90] PadRight[{},120,{1,5,3,4,8,6,7,2,9}] (* Harvey P. Dale, Sep 12 2017 *)
-
PARI
a(n)=[9, 1, 5, 3, 4, 8, 6, 7, 2][n%9+1] \\ Charles R Greathouse IV, Oct 04 2012
Formula
a(n) = a(n-9).
As the sum of the terms contained in each cycle is 45, they also satisfy the eighth-order inhomogeneous recurrence a(n)=45-a(n-1)-a(n-2)-a(n-3)-a(n-4)-a(n-5)-a(n-6)-a(n-7)-a(n-8).
a(n) = cos(8n Pi/9) (1 + 2 cos(2n Pi/9))(1 + 2 cos(2n Pi/3)) + (n + 7n^3 + 5n^4 + n^5 + 5n^6 + 4n^7 + 5n^8) mod 9.
G.f.: x(1 + 5x + 3x^2 + 4x^3 + 8x^4 + 6x^5 + 7x^6 + 2x^7 + 9x^8)/((1-x)(1 + x + x^2)(1 + x^3 + x^6)).
a(n) = 9-((8*(4^n-1)/3) mod 9). - Joe Slater, Mar 04 2018
Comments