A193173 Triangle in which n-th row lists the number of elements in lexicographically ordered partitions of n, A026791.
1, 2, 1, 3, 2, 1, 4, 3, 2, 2, 1, 5, 4, 3, 3, 2, 2, 1, 6, 5, 4, 4, 3, 3, 2, 3, 2, 2, 1, 7, 6, 5, 5, 4, 4, 3, 4, 3, 3, 2, 3, 2, 2, 1, 8, 7, 6, 6, 5, 5, 4, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 2, 2, 1, 9, 8, 7, 7, 6, 6, 5, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 10, 9, 8, 8, 7, 7, 6, 7, 6
Offset: 1
Examples
The lexicographically ordered partitions of 3 are [[1, 1, 1], [1, 2], [3]], thus row 3 has 3, 2, 1. Triangle begins: 1; 2, 1; 3, 2, 1; 4, 3, 2, 2, 1; 5, 4, 3, 3, 2, 2, 1; 6, 5, 4, 4, 3, 3, 2, 3, 2, 2, 1; ...
Links
- Alois P. Heinz, Rows n = 1..26, flattened
Crossrefs
Row lengths are A000041.
Partition lengths of A026791.
The version ignoring length is A036043.
The version for non-reversed partitions is A049085.
The maxima of these partitions are A194546.
Reversed partitions in Abramowitz-Stegun order are A036036.
Reverse-lexicographically ordered partitions are A080577.
Programs
-
Maple
T:= proc(n) local b, ll; b:= proc(n,l) if n=0 then ll:= ll, nops(l) else seq(b(n-i, [l[], i]), i=`if`(l=[], 1, l[-1])..n) fi end; ll:= NULL; b(n, []); ll end: seq(T(n), n=1..11);
-
Mathematica
lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; Table[Length/@Sort[Reverse/@IntegerPartitions[n],lexsort],{n,0,10}] (* Gus Wiseman, May 22 2020 *)
Comments