A211992 Triangle read by rows in which row n lists the partitions of n in colexicographic order.
1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 4, 1, 3, 2, 5, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 3, 2, 1, 5, 1, 2, 2, 2, 4, 2, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 2, 1, 1, 5, 1, 1, 2, 2, 2, 1, 4, 2, 1, 3, 3, 1, 6, 1, 3, 2, 2, 5, 2, 4, 3, 7
Offset: 1
Examples
From _Omar E. Pol_, Aug 24 2013: (Start) Illustration of initial terms: ----------------------------------------- n Diagram Partition ----------------------------------------- . _ 1 |_| 1; . _ _ 2 |_| | 1, 1, 2 |_ _| 2; . _ _ _ 3 |_| | | 1, 1, 1, 3 |_ _| | 2, 1, 3 |_ _ _| 3; . _ _ _ _ 4 |_| | | | 1, 1, 1, 1, 4 |_ _| | | 2, 1, 1, 4 |_ _ _| | 3, 1, 4 |_ _| | 2, 2, 4 |_ _ _ _| 4; . _ _ _ _ _ 5 |_| | | | | 1, 1, 1, 1, 1, 5 |_ _| | | | 2, 1, 1, 1, 5 |_ _ _| | | 3, 1, 1, 5 |_ _| | | 2, 2, 1, 5 |_ _ _ _| | 4, 1, 5 |_ _ _| | 3, 2, 5 |_ _ _ _ _| 5; . _ _ _ _ _ _ 6 |_| | | | | | 1, 1, 1, 1, 1, 1, 6 |_ _| | | | | 2, 1, 1, 1, 1, 6 |_ _ _| | | | 3, 1, 1, 1, 6 |_ _| | | | 2, 2, 1, 1, 6 |_ _ _ _| | | 4, 1, 1, 6 |_ _ _| | | 3, 2, 1, 6 |_ _ _ _ _| | 5, 1, 6 |_ _| | | 2, 2, 2, 6 |_ _ _ _| | 4, 2, 6 |_ _ _| | 3, 3, 6 |_ _ _ _ _ _| 6; ... Triangle begins: [1]; [1,1], [2]; [1,1,1], [2,1], [3]; [1,1,1,1], [2,1,1], [3,1], [2,2], [4]; [1,1,1,1,1], [2,1,1,1], [3,1,1], [2,2,1], [4,1], [3,2], [5]; [1,1,1,1,1,1], [2,1,1,1,1], [3,1,1,1], [2,2,1,1], [4,1,1], [3,2,1], [5,1], [2,2,2], [4,2], [3,3], [6]; (End) From _Gus Wiseman_, May 10 2020: (Start) The triangle with partitions shown as Heinz numbers (A334437) begins: 1 2 4 3 8 6 5 16 12 10 9 7 32 24 20 18 14 15 11 64 48 40 36 28 30 22 27 21 25 13 128 96 80 72 56 60 44 54 42 50 26 45 33 35 17 (End)
Links
- Joerg Arndt, Table of n, a(n) for n = 1..10000
- OEIS Wiki, Orderings of partitions
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
The graded reversed version is A026792.
The length-sensitive refinement is A036037.
The version for reversed partitions is A080576.
Partition lengths are A193173.
Partition maxima are A194546.
Partition minima are A196931.
The version for compositions is A228525.
The Heinz numbers of these partitions are A334437.
Programs
-
Mathematica
colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]]; Join@@Table[Sort[IntegerPartitions[n],colex],{n,0,6}] (* Gus Wiseman, May 10 2020 *)
-
PARI
gen_part(n)= { /* Generate partitions of n as weakly increasing lists (order is lex): */ my(ct = 0); my(m, pt); my(x, y); \\ init: my( a = vector( n + (n<=1) ) ); a[1] = 0; a[2] = n; m = 2; while ( m!=1, y = a[m] - 1; m -= 1; x = a[m] + 1; while ( x<=y, a[m] = x; y = y - x; m += 1; ); a[m] = x + y; pt = vector(m, j, a[j]); /* for A026791 print partition: */ \\ for (j=1, m, print1(pt[j],", ") ); /* for A211992 print partition as weakly decreasing list (order is colex): */ forstep (j=m, 1, -1, print1(pt[j],", ") ); ct += 1; ); return(ct); } for(n=1, 10, gen_part(n) ); \\ Joerg Arndt, Sep 02 2013
Comments