cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 76 results. Next

A080577 Triangle in which n-th row lists all partitions of n, in graded reverse lexicographic ordering.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 5, 1, 1, 4, 3, 4, 2, 1, 4, 1, 1, 1, 3, 3, 1, 3, 2
Offset: 1

Views

Author

N. J. A. Sloane, Mar 23 2003

Keywords

Comments

This is the "Mathematica" ordering of the partitions, referenced in numerous other sequences. The partitions of each integer are in reverse order of the conjugates of the partitions in Abramowitz and Stegun order (A036036). They are in the reverse of the order of the partitions in Maple order (A080576). - Franklin T. Adams-Watters, Oct 18 2006
The graded reverse lexicographic ordering of the partitions is often referred to as the "Canonical" ordering of the partitions. - Daniel Forgues, Jan 21 2011
Also the "MAGMA" ordering of the partitions. - Jason Kimberley, Oct 28 2011
Also an intuitive ordering described but not formalized in [Hardy and Wright] the first four editions of which precede [Abramowitz and Stegun]. - L. Edson Jeffery, Aug 03 2013
Also the "Sage" ordering of the partitions. - Peter Luschny, Aug 12 2013
While this is the order used for the constructive function "IntegerPartitions", it is different from Mathematica's canonical ordering of finite expressions, the latter giving A036036 if parts of partitions are read in reversed (weakly increasing) order, or A334301 if in the usual (weakly decreasing) order. - Gus Wiseman, May 08 2020

Examples

			First five rows are:
  {{1}}
  {{2}, {1, 1}}
  {{3}, {2, 1}, {1, 1, 1}}
  {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}
  {{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}
Up to the fifth row, this is exactly the same as the colexicographic ordering A036037. The first row which differs is the sixth one, which reads ((6), (5,1), (4,2), (4,1,1), (3,3), (3,2,1), (3,1,1,1), (2,2,2), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1,1)). - _M. F. Hasler_, Jan 23 2020
From _Gus Wiseman_, May 08 2020: (Start)
The sequence of all partitions begins:
  ()         (3,2)        (2,1,1,1,1)    (2,2,1,1,1)
  (1)        (3,1,1)      (1,1,1,1,1,1)  (2,1,1,1,1,1)
  (2)        (2,2,1)      (7)            (1,1,1,1,1,1,1)
  (1,1)      (2,1,1,1)    (6,1)          (8)
  (3)        (1,1,1,1,1)  (5,2)          (7,1)
  (2,1)      (6)          (5,1,1)        (6,2)
  (1,1,1)    (5,1)        (4,3)          (6,1,1)
  (4)        (4,2)        (4,2,1)        (5,3)
  (3,1)      (4,1,1)      (4,1,1,1)      (5,2,1)
  (2,2)      (3,3)        (3,3,1)        (5,1,1,1)
  (2,1,1)    (3,2,1)      (3,2,2)        (4,4)
  (1,1,1,1)  (3,1,1,1)    (3,2,1,1)      (4,3,1)
  (5)        (2,2,2)      (3,1,1,1,1)    (4,2,2)
  (4,1)      (2,2,1,1)    (2,2,2,1)      (4,2,1,1)
The triangle with partitions shown as Heinz numbers (A129129) begins:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  28  25  30  40  27  36  48  64
  17  26  33  44  35  42  56  50  45  60  80  54  72  96 128
(End)
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, Fifth edition, 1979, p. 273.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 287.

Crossrefs

See A080576 Maple (graded reflected lexicographic) ordering.
See A036036 for the Hindenburg (graded reflected colexicographic) ordering (listed in the Abramowitz and Stegun Handbook).
See A036037 for graded colexicographic ordering.
See A228100 for the Fenner-Loizou (binary tree) ordering.
Differs from A036037 at a(48).
See A322761 for a compressed version.
Lexicographically ordered reversed partitions are A026791.
Reverse-colexicographically ordered partitions are A026792.
Compositions under this ordering are A066099.
Distinct parts of these partitions are counted by A115623.
Taking Heinz numbers gives A129129.
Lexicographically ordered partitions are A193073.
Colexicographically ordered partitions are A211992.
Reading partitions in reverse (weakly increasing) order gives A228531.
Lengths of these partitions are A238966.
Sorting partitions by Heinz number gives A296150.
The maxima of these partitions are A331581.
The length-sensitive version is A334439.

Programs

  • Magma
    &cat[&cat Partitions(n):n in[1..7]]; // Jason Kimberley, Oct 28 2011
    
  • Maple
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> x[], b(n$2))[]:
    seq(T(n), n=1..8);  # Alois P. Heinz, Jan 29 2020
  • Mathematica
    <Jean-François Alcover, Dec 10 2012 *)
    revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Join@@Table[Sort[IntegerPartitions[n],revlexsort],{n,0,8}] (* Gus Wiseman, May 08 2020 *)
  • PARI
    A080577_row(n)={vecsort(apply(t->Vecrev(t),partitions(n)),,4)} \\ M. F. Hasler, Jan 21 2020
  • Sage
    L = []
    for n in range(8): L += list(Partitions(n))
    flatten(L)   # Peter Luschny, Aug 12 2013
    

A036036 Triangle read by rows in which row n lists all the parts of all reversed partitions of n, sorted first by length and then lexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 5, 1, 4, 2, 3, 1, 1, 3, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 5, 2, 4, 3, 3, 1, 1, 4, 1, 2, 3, 2, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 7, 1, 6, 2, 5, 3, 4, 1, 1, 5, 1, 2, 4, 1, 3, 3, 2, 2, 3, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

First differs from A334442 for reversed partitions of 9. Namely, this sequence has (1,4,4) before (2,2,5), while A334442 has (2,2,5) before (1,4,4). - Gus Wiseman, May 07 2020
This is the "Abramowitz and Stegun" ordering of the partitions, referenced in numerous other sequences. The partitions are in reverse order of the conjugates of the partitions in Mathematica order (A080577). Each partition is the conjugate of the corresponding partition in Maple order (A080576). - Franklin T. Adams-Watters, Oct 18 2006
The "Abramowitz and Stegun" ordering of the partitions is the graded reflected colexicographic ordering of the partitions. - Daniel Forgues, Jan 19 2011
The "Abramowitz and Stegun" ordering of partitions has been traced back to C. F. Hindenburg, 1779, in the Knuth reference, p. 38. See the Hindenburg link, pp. 77-5 with the listing of the partitions for n=10. This is also mentioned in the P. Luschny link. - Wolfdieter Lang, Apr 04 2011
The "Abramowitz and Stegun" order used here means that the partitions of a given number are listed by increasing number of (nonzero) parts, then by increasing lexicographical order with parts in (weakly) indecreasing order. This differs from n=9 on from A334442 which considers reverse lexicographic order of parts in (weakly) decreasing order. - M. F. Hasler, Jul 12 2015, corrected thanks to Gus Wiseman, May 14 2020
This is the Abramowitz-Stegun ordering of reversed partitions (finite weakly increasing sequences of positive integers). The same ordering of non-reversed partitions is A334301. - Gus Wiseman, May 07 2020

Examples

			1
2; 1,1
3; 1,2; 1,1,1
4; 1,3; 2,2; 1,1,2; 1,1,1,1
5; 1,4; 2,3; 1,1,3; 1,2,2; 1,1,1,2; 1,1,1,1,1;
6; 1,5; 2,4; 3,3; 1,1,4; 1,2,3; 2,2,2; 1,1,1,3; 1,1,2,2; 1,1,1,1,2; 1,1,1,1,1,1;
...
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "pi".
  • D. Knuth, The Art of Computer Programming, Vol. 4, fascicle 3, 7.2.1.4, Addison-Wesley, 2005.

Crossrefs

See A036037 for the graded colexicographic ordering.
See A080576 for the Maple (graded reflected lexicographic) ordering.
See A080577 for the Mathematica (graded reverse lexicographic) ordering.
See A193073 for the graded lexicographic ordering.
See A228100 for the Fenner-Loizou (binary tree) ordering.
The version ignoring length is A026791.
Same as A036037 with partitions reversed.
The lengths of these partitions are A036043.
The number of distinct parts is A103921.
The corresponding ordering of compositions is A124734.
Showing partitions as Heinz numbers gives A185974.
The version for non-reversed partitions is A334301.
Lexicographically ordered reversed partitions are A026791.
Sorting reversed partitions by Heinz number gives A112798.
The version for revlex instead of lex is A334302.
The version for revlex instead of colex is A334442.

Programs

  • Mathematica
    Join@@Table[Sort[Reverse/@IntegerPartitions[n]],{n,0,8}] (* Gus Wiseman, May 07 2020 *)
    - or -
    colen[f_,c_]:=OrderedQ[{Reverse[f],Reverse[c]}];
    Reverse/@Join@@Table[Sort[IntegerPartitions[n],colen],{n,0,8}] (* Gus Wiseman, May 07 2020 *)
  • PARI
    T036036(n,k)=k&&return(T036036(n)[k]);concat(partitions(n))
    \\ If 2nd arg "k" is not given, return the n-th row as a vector. Assumes PARI version >= 2.7.1. See A193073 for "hand made" code.
    concat(vector(8,n,T036036(n))) \\ to get the "flattened" sequence
    \\ M. F. Hasler, Jul 12 2015

Extensions

Edited by Daniel Forgues, Jan 21 2011
Edited by M. F. Hasler, Jul 12 2015
Name corrected by Gus Wiseman, May 12 2020

A036037 Triangle read by rows in which row n lists all the parts of all the partitions of n, sorted first by length and then colexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3, 4, 1, 1, 3, 2, 1, 2, 2, 2, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 4, 3, 5, 1, 1, 4, 2, 1, 3, 3, 1, 3, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Keywords

Comments

First differs from A334439 for partitions of 9. Namely, this sequence has (4,4,1) before (5,2,2), while A334439 has (5,2,2) before (4,4,1). - Gus Wiseman, May 08 2020
This is also a list of all the possible prime signatures of a number, arranged in graded colexicographic ordering. - N. J. A. Sloane, Feb 09 2014
This is also the Abramowitz-Stegun ordering of reversed partitions (A036036) if the partitions are reversed again after sorting. Partitions sorted first by sum and then colexicographically are A211992. - Gus Wiseman, May 08 2020

Examples

			First five rows are:
{{1}}
{{2}, {1, 1}}
{{3}, {2, 1}, {1, 1, 1}}
{{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}
{{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}
Up to the fifth row, this is exactly the same as the reverse lexicographic ordering A080577. The first row which differs is the sixth one, which reads ((6), (5,1), (4,2), (3,3), (4,1,1), (3,2,1), (2,2,2), (3,1,1,1), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1,1)). - _M. F. Hasler_, Jan 23 2020
From _Gus Wiseman_, May 08 2020: (Start)
The sequence of all partitions begins:
  ()         (3,2)        (2,1,1,1,1)
  (1)        (3,1,1)      (1,1,1,1,1,1)
  (2)        (2,2,1)      (7)
  (1,1)      (2,1,1,1)    (6,1)
  (3)        (1,1,1,1,1)  (5,2)
  (2,1)      (6)          (4,3)
  (1,1,1)    (5,1)        (5,1,1)
  (4)        (4,2)        (4,2,1)
  (3,1)      (3,3)        (3,3,1)
  (2,2)      (4,1,1)      (3,2,2)
  (2,1,1)    (3,2,1)      (4,1,1,1)
  (1,1,1,1)  (2,2,2)      (3,2,1,1)
  (5)        (3,1,1,1)    (2,2,2,1)
  (4,1)      (2,2,1,1)    (3,1,1,1,1)
(End)
		

Crossrefs

See A036036 for the graded reflected colexicographic ("Abramowitz and Stegun" or Hindenburg) ordering.
See A080576 for the graded reflected lexicographic ("Maple") ordering.
See A080577 for the graded reverse lexicographic ("Mathematica") ordering: differs from a(48) on!
See A228100 for the Fenner-Loizou (binary tree) ordering.
See also A036038, A036039, A036040: (multinomial coefficients).
Partition lengths are A036043.
Reversing all partitions gives A036036.
The number of distinct parts is A103921.
Taking Heinz numbers gives A185974.
The version ignoring length is A211992.
The version for revlex instead of colex is A334439.
Lexicographically ordered reversed partitions are A026791.
Reverse-lexicographically ordered partitions are A080577.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    Reverse/@Join@@Table[Sort[Reverse/@IntegerPartitions[n]],{n,8}] (* Gus Wiseman, May 08 2020 *)
    - or -
    colen[f_,c_]:=OrderedQ[{Reverse[f],Reverse[c]}];
    Join@@Table[Sort[IntegerPartitions[n],colen],{n,8}] (* Gus Wiseman, May 08 2020 *)

Extensions

Name corrected by Gus Wiseman, May 12 2020
Mathematica programs corrected to reflect offset of one and not zero by Robert Price, Jun 04 2020

A026791 Triangle in which n-th row lists juxtaposed lexicographically ordered partitions of n; e.g., the partitions of 3 (1+1+1,1+2,3) appear as 1,1,1,1,2,3 in row 3.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 4, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 4, 1, 2, 3, 1, 5, 2, 2, 2, 2, 4, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 2, 3, 1, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Differs from A080576 in a(18): Here, (...,1+3,2+2,4), there (...,2+2,1+3,4).
The representation of the partitions (for fixed n) is as (weakly) increasing lists of parts, the order between individual partitions (for the same n) is lexicographic (see example). - Joerg Arndt, Sep 03 2013
The equivalent sequence for compositions (ordered partitions) is A228369. - Omar E. Pol, Oct 19 2019

Examples

			First six rows are:
[[1]];
[[1, 1], [2]];
[[1, 1, 1], [1, 2], [3]];
[[1, 1, 1, 1], [1, 1, 2], [1, 3], [2, 2], [4]];
[[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 4], [2, 3], [5]];
[[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 1, 3], [1, 1, 2, 2], [1, 1, 4], [1, 2, 3], [1, 5], [2, 2, 2], [2, 4], [3, 3], [6]];
...
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms:
----------------------------------
.                     Ordered
n  j      Diagram     partition j
----------------------------------
.               _
1  1           |_|    1;
.             _ _
2  1         | |_|    1, 1,
2  2         |_ _|    2;
.           _ _ _
3  1       | | |_|    1, 1, 1,
3  2       | |_ _|    1, 2,
3  3       |_ _ _|    3;
.         _ _ _ _
4  1     | | | |_|    1, 1, 1, 1,
4  2     | | |_ _|    1, 1, 2,
4  3     | |_ _ _|    1, 3,
4  4     |   |_ _|    2, 2,
4  5     |_ _ _ _|    4;
...
(End)
		

Crossrefs

Row lengths are given in A006128.
Partition lengths are in A193173.
Row lengths are A000041.
Partition sums are A036042.
Partition minima are A196931.
Partition maxima are A194546.
The reflected version is A211992.
The length-sensitive version (sum/length/lex) is A036036.
The colexicographic version (sum/colex) is A080576.
The version for non-reversed partitions is A193073.
Compositions under the same ordering (sum/lex) are A228369.
The reverse-lexicographic version (sum/revlex) is A228531.
The Heinz numbers of these partitions are A334437.

Programs

  • Maple
    T:= proc(n) local b, ll;
          b:= proc(n,l)
                if n=0 then ll:= ll, l[]
              else seq(b(n-i, [l[], i]), i=`if`(l=[],1,l[-1])..n)
                fi
              end;
          ll:= NULL; b(n, []); ll
        end:
    seq(T(n), n=1..8);  # Alois P. Heinz, Jul 16 2011
  • Mathematica
    T[n0_] := Module[{b, ll}, b[n_, l_] := If[n == 0, ll = Join[ll, l], Table[ b[n - i, Append[l, i]], {i, If[l == {}, 1, l[[-1]]], n}]]; ll = {}; b[n0, {}]; ll]; Table[T[n], {n, 1, 8}] // Flatten (* Jean-François Alcover, Aug 05 2015, after Alois P. Heinz *)
    Table[DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions[n]], x_ /; x == 0, 2], {n, 7}] // Flatten (* Robert Price, May 18 2020 *)
  • Python
    t = [[[]]]
    for n in range(1, 10):
        p = []
        for minp in range(1, n):
            p += [[minp] + pp for pp in t[n-minp] if min(pp) >= minp]
        t.append(p + [[n]])
    print(t)
    # Andrey Zabolotskiy, Oct 18 2019

A193073 Triangle in which n-th row lists all partitions of n, in graded lexicographical ordering.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 3, 1, 1, 3, 2, 4, 1, 5, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 3, 1, 1, 1, 3, 2, 1, 3, 3, 4, 1, 1, 4, 2, 5, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

M. F. Hasler, Jul 15 2011

Keywords

Comments

The partitions of the integer n are sorted in lexicographical order (cf. link: sums are written with terms in decreasing order, then they are sorted in lexicographical (increasing) order), i.e., as [1,1,...,1], [2,1,...,1], [2,2,...], ..., [n].

Examples

			First five rows are:
[[1]]
[[1, 1], [2]]
[[1, 1, 1], [2, 1], [3]]
[[1, 1, 1, 1], [2, 1, 1], [2, 2], [3, 1], [4]]
[[1, 1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1], [3, 1, 1], [3, 2], [4, 1], [5]]
From _Gus Wiseman_, May 08 2020: (Start)
The sequence of all partitions begins:
  ()           (2,2,1)        (5,1)            (5,2)
  (1)          (3,1,1)        (6)              (6,1)
  (1,1)        (3,2)          (1,1,1,1,1,1,1)  (7)
  (2)          (4,1)          (2,1,1,1,1,1)    (1,1,1,1,1,1,1,1)
  (1,1,1)      (5)            (2,2,1,1,1)      (2,1,1,1,1,1,1)
  (2,1)        (1,1,1,1,1,1)  (2,2,2,1)        (2,2,1,1,1,1)
  (3)          (2,1,1,1,1)    (3,1,1,1,1)      (2,2,2,1,1)
  (1,1,1,1)    (2,2,1,1)      (3,2,1,1)        (2,2,2,2)
  (2,1,1)      (2,2,2)        (3,2,2)          (3,1,1,1,1,1)
  (2,2)        (3,1,1,1)      (3,3,1)          (3,2,1,1,1)
  (3,1)        (3,2,1)        (4,1,1,1)        (3,2,2,1)
  (4)          (3,3)          (4,2,1)          (3,3,1,1)
  (1,1,1,1,1)  (4,1,1)        (4,3)            (3,3,2)
  (2,1,1,1)    (4,2)          (5,1,1)          (4,1,1,1,1)
The triangle with partitions shown as Heinz numbers (A334434) begins:
    1
    2
    4   3
    8   6   5
   16  12   9  10   7
   32  24  18  20  15  14  11
   64  48  36  27  40  30  25  28  21  22  13
  128  96  72  54  80  60  45  50  56  42  35  44  33  26  17
(End)
		

Crossrefs

See A036036 for the Hindenburg (graded reflected colexicographic) ordering (listed in the Abramowitz and Stegun Handbook).
See A036037 for graded colexicographic ordering.
See A080576 for the Maple (graded reflected lexicographic) ordering.
See A080577 for the Mathematica (graded reverse lexicographic) ordering.
See A228100 for the Fenner-Loizou (binary tree) ordering.
A006128 gives row lengths.
Row n has A000041(n) partitions.
The version for reversed (weakly increasing) partitions is A026791.
Lengths of these partitions appear to be A049085.
Taking colex instead of lex gives A211992.
The generalization to compositions is A228351.
Sorting partitions by Heinz number gives A296150.
The length-sensitive refinement is A334301.
The Heinz numbers of these partitions are A334434.

Programs

  • Mathematica
    row[n_] := Flatten[Reverse[Reverse /@ SplitBy[IntegerPartitions[n], Length] ], 1]; Array[row, 19] // Flatten (* Jean-François Alcover, Dec 05 2016 *)
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Join@@Table[Sort[IntegerPartitions[n],lexsort],{n,0,8}] (* Gus Wiseman, May 08 2020 *)
  • PARI
    A193073_row(n)=concat(vecsort(apply(P->Vec(vecsort(P,,4)),partitions(n)))) \\ The two vecsort() are needed since the PARI function (version >= 2.7.1) yields the partitions in Abramowitz-Stegun order: sorted by increasing length, decreasing largest part, then lex order, with parts in increasing order. - M. F. Hasler, Jun 04 2018 [replaced older code from Jul 12 2015]
    
  • Sage
    def p(n, i):
        if n==0 or i==1: return [[1]*n]
        T = [[i] + x for x in p(n-i, i)] if i<=n else []
        return p(n, i-1) + T
    A193073 = lambda n: p(n,n)
    for n in (1..5): print(A193073(n)) # Peter Luschny, Aug 07 2015

A221529 Triangle read by rows: T(n,k) = A000203(k)*A000041(n-k), 1 <= k <= n.

Original entry on oeis.org

1, 1, 3, 2, 3, 4, 3, 6, 4, 7, 5, 9, 8, 7, 6, 7, 15, 12, 14, 6, 12, 11, 21, 20, 21, 12, 12, 8, 15, 33, 28, 35, 18, 24, 8, 15, 22, 45, 44, 49, 30, 36, 16, 15, 13, 30, 66, 60, 77, 42, 60, 24, 30, 13, 18, 42, 90, 88, 105, 66, 84, 40, 45, 26, 18, 12, 56, 126, 120, 154, 90, 132, 56, 75, 39, 36, 12, 28
Offset: 1

Views

Author

Omar E. Pol, Jan 20 2013

Keywords

Comments

Since A000203(k) has a symmetric representation, both T(n,k) and the partial sums of row n can be represented by symmetric polycubes. For more information see A237593 and A237270. For another version see A245099. - Omar E. Pol, Jul 15 2014
From Omar E. Pol, Jul 10 2021: (Start)
The above comment refers to a symmetric tower whose terraces are the symmetric representation of sigma(i), for i = 1..n, starting from the top. The levels of these terraces are the partition numbers A000041(h-1), for h = 1 to n, starting from the base of the tower, where n is the length of the largest side of the base.
The base of the tower is the symmetric representation of A024916(n).
The height of the tower is equal to A000041(n-1).
The surface area of the tower is equal to A345023(n).
The volume (or the number of cubes) of the tower equals A066186(n).
The volume represents the n-th term of the convolution of A000203 and A000041, that is A066186(n).
Note that the terraces that are the symmetric representation of sigma(n) and the terraces that are the symmetric representation of sigma(n-1) both are unified in level 1 of the structure. That is because the first two partition numbers A000041 are [1, 1].
The tower is an object of the family of the stepped pyramid described in A245092.
T(n,k) can be represented with a set of A237271(k) right prisms of height A000041(n-k) since T(n,k) is the total number of cubes that are exactly below the parts of the symmetric representation of sigma(k) in the tower.
T(n,k) is also the sum of all divisors of all k's that are in the first n rows of triangle A336811, or in other words, in the first A000070(n-1) terms of the sequence A336811. Hence T(n,k) is also the sum of all divisors of all k's in the n-th row of triangle A176206.
The mentioned property is due to the correspondence between divisors and parts explained in A338156: all divisors of the first A000070(n-1) terms of A336811 are also all parts of all partitions of n.
Therefore the set of all partitions of n >= 1 has an associated tower.
The partial column sums of A340583 give this triangle showing the growth of the structure of the tower.
Note that the convolution of A000203 with any integer sequence S can be represented with a symmetric tower or structure of the same family where its terraces are the symmetric representation of sigma starting from the top and the heights of the terraces starting from the base are the terms of the sequence S. (End)

Examples

			Triangle begins:
------------------------------------------------------
    n| k    1   2   3   4   5   6   7   8   9  10
------------------------------------------------------
    1|      1;
    2|      1,  3;
    3|      2,  3,  4;
    4|      3,  6,  4,  7;
    5|      5,  9,  8,  7,  6;
    6|      7, 15, 12, 14,  6, 12;
    7|     11, 21, 20, 21, 12, 12,  8;
    8|     15, 33, 28, 35, 18, 24,  8, 15;
    9|     22, 45, 44, 49, 30, 36, 16, 15, 13;
   10|     30, 66, 60, 77, 42, 60, 24, 30, 13, 18;
...
The sum of row 10 is [30 + 66 + 60 + 77 + 42 + 60 + 24 + 30 + 13 + 18] = A066186(10) = 420.
.
For n = 10 the calculation of the row 10 is as follows:
    k    A000203         T(10,k)
    1       1   *  30   =   30
    2       3   *  22   =   66
    3       4   *  15   =   60
    4       7   *  11   =   77
    5       6   *   7   =   42
    6      12   *   5   =   60
    7       8   *   3   =   24
    8      15   *   2   =   30
    9      13   *   1   =   13
   10      18   *   1   =   18
                 A000041
.
From _Omar E. Pol_, Jul 13 2021: (Start)
For n = 10 we can see below three views of two associated polycubes called here "prism of partitions" and "tower". Both objects contain the same number of cubes (that property is valid for n >= 1).
        _ _ _ _ _ _ _ _ _ _
  42   |_ _ _ _ _          |
       |_ _ _ _ _|_        |
       |_ _ _ _ _ _|_      |
       |_ _ _ _      |     |
       |_ _ _ _|_ _ _|_    |
       |_ _ _ _        |   |
       |_ _ _ _|_      |   |
       |_ _ _ _ _|_    |   |
       |_ _ _      |   |   |
       |_ _ _|_    |   |   |
       |_ _    |   |   |   |
       |_ _|_ _|_ _|_ _|_  |                             _
  30   |_ _ _ _ _        | |                            | | 30
       |_ _ _ _ _|_      | |                            | |
       |_ _ _      |     | |                            | |
       |_ _ _|_ _ _|_    | |                            | |
       |_ _ _ _      |   | |                            | |
       |_ _ _ _|_    |   | |                            | |
       |_ _ _    |   |   | |                            | |
       |_ _ _|_ _|_ _|_  | |                           _|_|
  22   |_ _ _ _        | | |                          |   |  22
       |_ _ _ _|_      | | |                          |   |
       |_ _ _ _ _|_    | | |                          |   |
       |_ _ _      |   | | |                          |   |
       |_ _ _|_    |   | | |                          |   |
       |_ _    |   |   | | |                          |   |
       |_ _|_ _|_ _|_  | | |                         _|_ _|
  15   |_ _ _ _      | | | |                        | |   |  15
       |_ _ _ _|_    | | | |                        | |   |
       |_ _ _    |   | | | |                        | |   |
       |_ _ _|_ _|_  | | | |                       _|_|_ _|
  11   |_ _ _      | | | | |                      | |     |  11
       |_ _ _|_    | | | | |                      | |     |
       |_ _    |   | | | | |                      | |     |
       |_ _|_ _|_  | | | | |                     _| |_ _ _|
   7   |_ _ _    | | | | | |                    |   |     |   7
       |_ _ _|_  | | | | | |                   _|_ _|_ _ _|
   5   |_ _    | | | | | | |                  | | |       |   5
       |_ _|_  | | | | | | |                 _| | |_ _ _ _|
   3   |_ _  | | | | | | | |               _|_ _|_|_ _ _ _|   3
   2   |_  | | | | | | | | |           _ _|_ _|_|_ _ _ _ _|   2
   1   |_|_|_|_|_|_|_|_|_|_|          |_ _|_|_|_ _ _ _ _ _|   1
.
             Figure 1.                       Figure 2.
         Front view of the                 Lateral view
        prism of partitions.               of the tower.
.
.                                      _ _ _ _ _ _ _ _ _ _
                                      |   | | | | | | | |_|   1
                                      |   | | | | | |_|_ _|   2
                                      |   | | | |_|_  |_ _|   3
                                      |   | |_|_    |_ _ _|   4
                                      |   |_ _  |_  |_ _ _|   5
                                      |_ _    |_  |_ _ _ _|   6
                                          |_    | |_ _ _ _|   7
                                            |_  |_ _ _ _ _|   8
                                              |           |   9
                                              |_ _ _ _ _ _|  10
.
                                             Figure 3.
                                             Top view
                                           of the tower.
.
Figure 1 is a two-dimensional diagram of the partitions of 10 in colexicographic order (cf. A026792, A211992). The area of the diagram is 10*42 = A066186(10) = 420. Note that the diagram can be interpreted also as the front view of a right prism whose volume is 1*10*42 = 420 equaling the volume and the number of cubes of the tower that appears in the figures 2 and 3.
Note that the shape and the area of the lateral view of the tower are the same as the shape and the area where the 1's are located in the diagram of partitions. In this case the mentioned area equals A000070(10-1) = 97.
The connection between these two associated objects is a representation of the correspondence divisor/part described in A338156. See also A336812.
The sum of the volumes of both objects equals A220909.
For the connection with the table of A338156 see also A340035. (End)
		

Crossrefs

Programs

  • Mathematica
    nrows=12; Table[Table[DivisorSigma[1,k]PartitionsP[n-k],{k,n}],{n,nrows}] // Flatten (* Paolo Xausa, Jun 17 2022 *)
  • PARI
    T(n,k)=sigma(k)*numbpart(n-k) \\ Charles R Greathouse IV, Feb 19 2013

Formula

T(n,k) = sigma(k)*p(n-k) = A000203(k)*A027293(n,k).
T(n,k) = A245093(n,k)*A027293(n,k).

A026792 List of juxtaposed reverse-lexicographically ordered partitions of the positive integers.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 5, 1, 3, 2, 1, 4, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 6, 1, 3, 3, 1, 4, 2, 1, 2, 2, 2, 1, 5, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 2, 2, 1
Offset: 1

Views

Author

Keywords

Comments

The representation of the partitions (for fixed n) is as (weakly) decreasing lists of parts, the order between individual partitions (for the same n) is (list-)reversed lexicographic; see examples. [Joerg Arndt, Sep 03 2013]
Written as a triangle; row n has length A006128(n); row sums give A066186. Also written as an irregular tetrahedron in which T(n,j,k) is the k-th largest part of the j-th partition of n; the sum of column k in the slice n is A181187(n,k); right border of the slices gives A182715. - Omar E. Pol, Mar 25 2012
The equivalent sequence for compositions (ordered partitions) is A228351. - Omar E. Pol, Sep 03 2013
This is the reverse-colexicographic order of integer partitions, or the reflected reverse-lexicographic order of reversed integer partitions. It is not reverse-lexicographic order (A080577), wherein we would have (3,1) before (2,2). - Gus Wiseman, May 12 2020

Examples

			E.g. the partitions of 3 (3,2+1,1+1+1) appear as the string 3,2,1,1,1,1.
So the list begins:
1
2, 1, 1,
3, 2, 1, 1, 1, 1,
4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1,
5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
...
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms:
---------------------------------
n  j     Diagram     Partition
---------------------------------
.         _
1  1     |_|         1;
.         _ _
2  1     |_  |       2,
2  2     |_|_|       1, 1;
.         _ _ _
3  1     |_ _  |     3,
3  2     |_  | |     2, 1,
3  3     |_|_|_|     1, 1, 1;
.         _ _ _ _
4  1     |_ _    |   4,
4  2     |_ _|_  |   2, 2,
4  3     |_ _  | |   3, 1,
4  4     |_  | | |   2, 1, 1,
4  5     |_|_|_|_|   1, 1, 1, 1;
...
(End)
From _Gus Wiseman_, May 12 2020: (Start)
This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows. Showing these partitions as their Heinz numbers gives A334436.
                             0
                            (1)
                          (2)(11)
                        (3)(21)(111)
                   (4)(22)(31)(211)(1111)
             (5)(32)(41)(221)(311)(2111)(11111)
  (6)(33)(42)(222)(51)(321)(411)(2211)(3111)(21111)(111111)
(End)
		

Crossrefs

The reflected version for reversed partitions is A080577.
The partition minima appear to be A182715.
The graded reversed version is A211992.
The version for compositions is A228351.
The Heinz numbers of these partitions are A334436.

Programs

  • Mathematica
    revcolex[f_,c_]:=OrderedQ[PadRight[{Reverse[c],Reverse[f]}]];
    Join@@Table[Sort[IntegerPartitions[n],revcolex],{n,0,8}] (* reverse-colexicographic order, Gus Wiseman, May 10 2020 *)
    - or -
    revlex[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Reverse/@Join@@Table[Sort[Reverse/@IntegerPartitions[n],revlex],{n,0,8}] (* reflected reverse-lexicographic order, Gus Wiseman, May 12 2020 *)

Extensions

Terms 81st, 83rd and 84th corrected by Omar E. Pol, Aug 16 2009

A185974 Partitions in Abramowitz-Stegun order A036036 mapped one-to-one to positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 10, 9, 12, 16, 11, 14, 15, 20, 18, 24, 32, 13, 22, 21, 25, 28, 30, 27, 40, 36, 48, 64, 17, 26, 33, 35, 44, 42, 50, 45, 56, 60, 54, 80, 72, 96, 128, 19, 34, 39, 55, 49, 52, 66, 70, 63, 75, 88, 84, 100, 90, 81, 112, 120, 108, 160, 144, 192, 256, 23, 38, 51, 65, 77, 68, 78, 110, 98, 99, 105, 125, 104, 132, 140, 126, 150, 135, 176, 168, 200, 180, 162, 224, 240, 216, 320, 288, 384, 512, 29, 46, 57, 85, 91, 121, 76, 102, 130, 154, 117, 165, 147, 175, 136, 156, 220, 196, 198, 210, 250, 189, 225, 208, 264, 280, 252, 300, 270, 243, 352, 336, 400, 360, 324, 448, 480, 432, 640, 576, 768, 1024
Offset: 0

Views

Author

Wolfdieter Lang, Feb 10 2011

Keywords

Comments

First differs from A334438 (shifted left once) at a(75) = 98, A334438(76) = 99. - Gus Wiseman, May 20 2020
This mapping of the set of all partitions of N >= 0 to {1, 2, 3, ...} (set of natural numbers) is one to one (bijective). The empty partition for N = 0 maps to 1.
A129129 seems to be analogous, except that the partition ordering A080577 is used. This ordering, however, does not care about the number of parts: e.g., 1^2,4 = 4,1^2 comes before 3^2, so a(23)=28 and a(22)=25 are interchanged.
Also Heinz numbers of all reversed integer partitions (finite weakly increasing sequences of positive integers), sorted first by sum, then by length, and finally lexicographically, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The version for non-reversed partitions is A334433. - Gus Wiseman, May 20 2020

Examples

			a(22) = 25 = prime(3)^2 because the 22nd partition in A-St order is the 2-part partition (3,3) of N = 6, because A026905(5) = 18 < 22 <= A026905(6) = 29.
a(23) = 28 = prime(1)^2*prime(4) corresponds to the partition 1+1+4 = 4+1+1 with three parts, also of N = 6.
From _Gus Wiseman_, May 20 2020: (Start)
Triangle begins:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  25  28  30  27  40  36  48  64
  17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
As a triangle of reversed partitions we have:
                             0
                            (1)
                          (2)(11)
                        (3)(12)(111)
                   (4)(13)(22)(112)(1111)
             (5)(14)(23)(113)(122)(1112)(11111)
  (6)(15)(24)(33)(114)(123)(222)(1113)(1122)(11112)(111111)
(End)
		

Crossrefs

Row lengths are A000041.
The constructive version is A036036.
Also Heinz numbers of the partitions in A036037.
The generalization to compositions is A124734.
The version for non-reversed partitions is A334433.
The non-reversed length-insensitive version is A334434.
The opposite version (sum/length/revlex) is A334435.
Ignoring length gives A334437.
Sorting reversed partitions by Heinz number gives A112798.
Partitions in lexicographic order are A193073.
Partitions in colexicographic order are A211992.
Graded Heinz numbers are A215366.

Programs

  • Mathematica
    Join@@Table[Times@@Prime/@#&/@Sort[Reverse/@IntegerPartitions[n]],{n,0,8}] (* Gus Wiseman, May 21 2020 *)
  • PARI
    A185974_row(n)=[vecprod([prime(i)|i<-p])|p<-partitions(n)] \\ below a helper function:
    index_of_partition(n)={for(r=0, oo, my(c = numbpart(r)); n >= c || return([r,n+1]); n -= c)}
    /* A185974(n,k), 1 <= k <= A000041(n), gives the k-th partition of n >= 0; if k is omitted, A185974(n) return the term of index n of the flattened sequence a(n >= 0).
      This function is used in other sequences (such as A122172) which need to access the n-th partition as listed in A-S order. */
    A185974(n, k=index_of_partition(n))=A185974_row(iferr(k[1], E, k=[k,k]; n))[k[2]] \\ (End)

Formula

a(n) = Product_{j=1..N(n)} p(j)^e(j), with p(j):=A000040(j) (j-th prime), and the exponent e(j) >= 0 of the part j in the n-th partition written in Abramowitz-Stegun (A-St) order, indicated in A036036. Note that j^0 is not 1 but has to be omitted in the partition. N(n) is the index (argument) of the smallest A026905-number greater than or equal to n (the index of the A026905-ceiling of n).
From Gus Wiseman, May 21 2020: (Start)
A001221(a(n)) = A103921(n).
A001222(a(n)) = A036043(n).
A056239(a(n)) = A036042(n).
A061395(a(n)) = A049085(n).
(End)

Extensions

Examples edited by M. F. Hasler, Jan 07 2024

A334301 Irregular triangle read by rows where row k is the k-th integer partition, if partitions are sorted first by sum, then by length, and finally lexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 5, 1, 2, 2, 2, 3, 2, 1, 4, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 6, 1, 3, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 29 2020

Keywords

Comments

This is the Abramowitz-Stegun ordering of integer partitions when they are read in the usual (weakly decreasing) order. The case of reversed (weakly increasing) partitions is A036036.

Examples

			The sequence of all partitions in Abramowitz-Stegun order begins:
  ()      (41)     (21111)   (31111)    (3221)
  (1)     (221)    (111111)  (211111)   (3311)
  (2)     (311)    (7)       (1111111)  (4211)
  (11)    (2111)   (43)      (8)        (5111)
  (3)     (11111)  (52)      (44)       (22211)
  (21)    (6)      (61)      (53)       (32111)
  (111)   (33)     (322)     (62)       (41111)
  (4)     (42)     (331)     (71)       (221111)
  (22)    (51)     (421)     (332)      (311111)
  (31)    (222)    (511)     (422)      (2111111)
  (211)   (321)    (2221)    (431)      (11111111)
  (1111)  (411)    (3211)    (521)      (9)
  (5)     (2211)   (4111)    (611)      (54)
  (32)    (3111)   (22111)   (2222)     (63)
This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows.
                            0
                           (1)
                        (2) (1,1)
                    (3) (2,1) (1,1,1)
            (4) (2,2) (3,1) (2,1,1) (1,1,1,1)
  (5) (3,2) (4,1) (2,2,1) (3,1,1) (2,1,1,1) (1,1,1,1,1)
Showing partitions as their Heinz numbers (see A334433) gives:
   1
   2
   3   4
   5   6   8
   7   9  10  12  16
  11  15  14  18  20  24  32
  13  25  21  22  27  30  28  36  40  48  64
  17  35  33  26  45  50  42  44  54  60  56  72  80  96 128
		

Crossrefs

Lexicographically ordered reversed partitions are A026791.
The version for reversed partitions (sum/length/lex) is A036036.
Row lengths are A036043.
Reverse-lexicographically ordered partitions are A080577.
The version for compositions is A124734.
Lexicographically ordered partitions are A193073.
Sorting by Heinz number gives A296150, or A112798 for reversed partitions.
Sorting first by sum, then by Heinz number gives A215366.
Reversed partitions under the dual ordering (sum/length/revlex) are A334302.
Taking Heinz numbers gives A334433.
The reverse-lexicographic version is A334439 (not A036037).

Programs

  • Mathematica
    Join@@Table[Sort[IntegerPartitions[n]],{n,0,8}]

A338156 Irregular triangle read by rows in which row n lists n blocks, where the m-th block consists of A000041(m-1) copies of the divisors of (n - m + 1), with 1 <= m <= n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 6, 1, 5, 1, 2, 4, 1, 2, 4, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 2, 3, 6, 1, 5, 1, 5, 1, 2, 4, 1, 2, 4, 1, 2, 4
Offset: 1

Views

Author

Omar E. Pol, Oct 14 2020

Keywords

Comments

In other words: in row n replace every term of n-th row of A176206 with its divisors.
The terms in row n are also all parts of all partitions of n.
As in A336812 here we introduce a new type of table which shows the correspondence between divisors and partitions. More precisely the table shows the correspondence between all divisors of all terms of the n-th row of A176206 and all parts of all partitions of n, with n >= 1. Both the mentionded divisors and the mentioned parts are the same numbers (see Example section). That is because all divisors of the first A000070(n-1) terms of A336811 are also all parts of all partitions of n.
For an equivalent table for all parts of the last section of the set of partitions of n see the subsequence A336812. The section is the smallest substructure of the set of partitions in which appears the correspondence divisor/part.
From Omar E. Pol, Aug 01 2021: (Start)
The terms of row n appears in the triangle A346741 ordered in accordance with the successive sections of the set of partitions of n.
The terms of row n in nonincreasing order give the n-th row of A302246.
The terms of row n in nondecreasing order give the n-th row of A302247.
For the connection with the tower described in A221529 see also A340035. (End)

Examples

			Triangle begins:
  [1];
  [1,2],   [1];
  [1,3],   [1,2],   [1],   [1];
  [1,2,4], [1,3],   [1,2], [1,2], [1],   [1],   [1];
  [1,5],   [1,2,4], [1,3], [1,3], [1,2], [1,2], [1,2], [1], [1], [1], [1], [1];
  ...
For n = 5 the 5th row of A176206 is [5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1] so replacing every term with its divisors we have the 5th row of this triangle.
Also, if the sequence is written as an irregular tetrahedron so the first six slices are:
  [1],
  -------
  [1, 2],
  [1],
  -------
  [1, 3],
  [1, 2],
  [1],
  [1];
  ----------
  [1, 2, 4],
  [1, 3],
  [1, 2],
  [1, 2],
  [1],
  [1],
  [1];
  ----------
  [1, 5],
  [1, 2, 4],
  [1, 3],
  [1, 3],
  [1, 2],
  [1, 2],
  [1, 2],
  [1],
  [1],
  [1],
  [1],
  [1];
.
The above slices appear in the lower zone of the following table which shows the correspondence between the mentioned divisors and all parts of all partitions of the positive integers.
The table is infinite. It is formed by three zones as follows:
The upper zone shows the partitions of every positive integer in colexicographic order (cf. A026792, A211992).
The lower zone shows the same numbers but arranged as divisors in accordance with the slices of the tetrahedron mentioned above.
Finally the middle zone shows the connection between the upper zone and the lower zone.
For every positive integer the numbers in the upper zone are the same numbers as in the lower zone.
.
|---|---------|-----|-------|---------|------------|---------------|
| n |         |  1  |   2   |    3    |      4     |       5       |
|---|---------|-----|-------|---------|------------|---------------|
| P |         |     |       |         |            |               |
| A |         |     |       |         |            |               |
| R |         |     |       |         |            |               |
| T |         |     |       |         |            |  5            |
| I |         |     |       |         |            |  3  2         |
| T |         |     |       |         |  4         |  4  1         |
| I |         |     |       |         |  2  2      |  2  2  1      |
| O |         |     |       |  3      |  3  1      |  3  1  1      |
| N |         |     |  2    |  2 1    |  2  1 1    |  2  1  1 1    |
| S |         |  1  |  1 1  |  1 1 1  |  1  1 1 1  |  1  1  1 1 1  |
----|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
|   | A181187 |  1  |  3 1  |  6 2 1  | 12  5 2 1  | 20  8  4 2 1  |
|   |         |  |  |  |/|  |  |/|/|  |  |/ |/|/|  |  |/ | /|/|/|  |
| L | A066633 |  1  |  2 1  |  4 1 1  |  7  3 1 1  | 12  4  2 1 1  |
| I |         |  *  |  * *  |  * * *  |  *  * * *  |  *  *  * * *  |
| N | A002260 |  1  |  1 2  |  1 2 3  |  1  2 3 4  |  1  2  3 4 5  |
| K |         |  =  |  = =  |  = = =  |  =  = = =  |  =  =  = = =  |
|   | A138785 |  1  |  2 2  |  4 2 3  |  7  6 3 4  | 12  8  6 4 5  |
|   |         |  |  |  |\|  |  |\|\|  |  |\ |\|\|  |  |\ |\ |\|\|  |
|   | A206561 |  1  |  4 2  |  9 5 3  | 20 13 7 4  | 35 23 15 9 5  |
|---|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
|   | A027750 |  1  |  1 2  |  1   3  |  1  2   4  |  1         5  |
|   |---------|-----|-------|---------|------------|---------------|
|   | A027750 |     |  1    |  1 2    |  1    3    |  1  2    4    |
|   |---------|-----|-------|---------|------------|---------------|
| D | A027750 |     |       |  1      |  1  2      |  1     3      |
| I | A027750 |     |       |  1      |  1  2      |  1     3      |
| V |---------|-----|-------|---------|------------|---------------|
| I | A027750 |     |       |         |  1         |  1  2         |
| S | A027750 |     |       |         |  1         |  1  2         |
| O | A027750 |     |       |         |  1         |  1  2         |
| R |---------|-----|-------|---------|------------|---------------|
| S | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|---|---------|-----|-------|---------|------------|---------------|
.
Note that every row in the lower zone lists A027750.
Also the lower zone for every positive integer can be constructed using the first n terms of the partition numbers. For example: for n = 5 we consider the first 5 terms of A000041 (that is [1, 1, 2, 3, 5]) then the 5th slice is formed by a block with the divisors of 5, one block with the divisors of 4, two blocks with the divisors of 3, three blocks with the divisors of 2, and five blocks with the divisors of 1.
Note that the lower zone is also in accordance with the tower (a polycube) described in A221529 in which its terraces are the symmetric representation of sigma starting from the top (cf. A237593) and the heights of the mentioned terraces are the partition numbers A000041 starting from the base.
The tower has the same volume (also the same number of cubes) equal to A066186(n) as a prism of partitions of size 1*n*A000041(n).
The above table shows the correspondence between the prism of partitions and its associated tower since the number of parts in all partitions of n is equal to A006128(n) equaling the number of divisors in the n-th slice of the lower table and equaling the same the number of terms in the n-th row of triangle. Also the sum of all parts of all partitions of n is equal to A066186(n) equaling the sum of all divisors in the n-th slice of the lower table and equaling the sum of the n-th row of triangle.
		

Crossrefs

Nonzero terms of A340031.
Row n has length A006128(n).
The sum of row n is A066186(n).
The product of row n is A007870(n).
Row n lists the first n rows of A336812 (a subsequence).
The number of parts k in row n is A066633(n,k).
The sum of all parts k in row n is A138785(n,k).
The number of parts >= k in row n is A181187(n,k).
The sum of all parts >= k in row n is A206561(n,k).
The number of parts <= k in row n is A210947(n,k).
The sum of all parts <= k in row n is A210948(n,k).

Programs

  • Mathematica
    A338156[rowmax_]:=Table[Flatten[Table[ConstantArray[Divisors[n-m],PartitionsP[m]],{m,0,n-1}]],{n,rowmax}];
    A338156[10] (* Generates 10 rows *) (* Paolo Xausa, Jan 12 2023 *)
  • PARI
    A338156(rowmax)=vector(rowmax,n,concat(vector(n,m,concat(vector(numbpart(m-1),i,divisors(n-m+1))))));
    A338156(10) \\ Generates 10 rows - Paolo Xausa, Feb 17 2023
Showing 1-10 of 76 results. Next