cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 118 results. Next

A185974 Partitions in Abramowitz-Stegun order A036036 mapped one-to-one to positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 10, 9, 12, 16, 11, 14, 15, 20, 18, 24, 32, 13, 22, 21, 25, 28, 30, 27, 40, 36, 48, 64, 17, 26, 33, 35, 44, 42, 50, 45, 56, 60, 54, 80, 72, 96, 128, 19, 34, 39, 55, 49, 52, 66, 70, 63, 75, 88, 84, 100, 90, 81, 112, 120, 108, 160, 144, 192, 256, 23, 38, 51, 65, 77, 68, 78, 110, 98, 99, 105, 125, 104, 132, 140, 126, 150, 135, 176, 168, 200, 180, 162, 224, 240, 216, 320, 288, 384, 512, 29, 46, 57, 85, 91, 121, 76, 102, 130, 154, 117, 165, 147, 175, 136, 156, 220, 196, 198, 210, 250, 189, 225, 208, 264, 280, 252, 300, 270, 243, 352, 336, 400, 360, 324, 448, 480, 432, 640, 576, 768, 1024
Offset: 0

Views

Author

Wolfdieter Lang, Feb 10 2011

Keywords

Comments

First differs from A334438 (shifted left once) at a(75) = 98, A334438(76) = 99. - Gus Wiseman, May 20 2020
This mapping of the set of all partitions of N >= 0 to {1, 2, 3, ...} (set of natural numbers) is one to one (bijective). The empty partition for N = 0 maps to 1.
A129129 seems to be analogous, except that the partition ordering A080577 is used. This ordering, however, does not care about the number of parts: e.g., 1^2,4 = 4,1^2 comes before 3^2, so a(23)=28 and a(22)=25 are interchanged.
Also Heinz numbers of all reversed integer partitions (finite weakly increasing sequences of positive integers), sorted first by sum, then by length, and finally lexicographically, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The version for non-reversed partitions is A334433. - Gus Wiseman, May 20 2020

Examples

			a(22) = 25 = prime(3)^2 because the 22nd partition in A-St order is the 2-part partition (3,3) of N = 6, because A026905(5) = 18 < 22 <= A026905(6) = 29.
a(23) = 28 = prime(1)^2*prime(4) corresponds to the partition 1+1+4 = 4+1+1 with three parts, also of N = 6.
From _Gus Wiseman_, May 20 2020: (Start)
Triangle begins:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  25  28  30  27  40  36  48  64
  17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
As a triangle of reversed partitions we have:
                             0
                            (1)
                          (2)(11)
                        (3)(12)(111)
                   (4)(13)(22)(112)(1111)
             (5)(14)(23)(113)(122)(1112)(11111)
  (6)(15)(24)(33)(114)(123)(222)(1113)(1122)(11112)(111111)
(End)
		

Crossrefs

Row lengths are A000041.
The constructive version is A036036.
Also Heinz numbers of the partitions in A036037.
The generalization to compositions is A124734.
The version for non-reversed partitions is A334433.
The non-reversed length-insensitive version is A334434.
The opposite version (sum/length/revlex) is A334435.
Ignoring length gives A334437.
Sorting reversed partitions by Heinz number gives A112798.
Partitions in lexicographic order are A193073.
Partitions in colexicographic order are A211992.
Graded Heinz numbers are A215366.

Programs

  • Mathematica
    Join@@Table[Times@@Prime/@#&/@Sort[Reverse/@IntegerPartitions[n]],{n,0,8}] (* Gus Wiseman, May 21 2020 *)
  • PARI
    A185974_row(n)=[vecprod([prime(i)|i<-p])|p<-partitions(n)] \\ below a helper function:
    index_of_partition(n)={for(r=0, oo, my(c = numbpart(r)); n >= c || return([r,n+1]); n -= c)}
    /* A185974(n,k), 1 <= k <= A000041(n), gives the k-th partition of n >= 0; if k is omitted, A185974(n) return the term of index n of the flattened sequence a(n >= 0).
      This function is used in other sequences (such as A122172) which need to access the n-th partition as listed in A-S order. */
    A185974(n, k=index_of_partition(n))=A185974_row(iferr(k[1], E, k=[k,k]; n))[k[2]] \\ (End)

Formula

a(n) = Product_{j=1..N(n)} p(j)^e(j), with p(j):=A000040(j) (j-th prime), and the exponent e(j) >= 0 of the part j in the n-th partition written in Abramowitz-Stegun (A-St) order, indicated in A036036. Note that j^0 is not 1 but has to be omitted in the partition. N(n) is the index (argument) of the smallest A026905-number greater than or equal to n (the index of the A026905-ceiling of n).
From Gus Wiseman, May 21 2020: (Start)
A001221(a(n)) = A103921(n).
A001222(a(n)) = A036043(n).
A056239(a(n)) = A036042(n).
A061395(a(n)) = A049085(n).
(End)

Extensions

Examples edited by M. F. Hasler, Jan 07 2024

A330985 Irregular table read by rows in which row n gives the Littlewood-Richardson coefficients for the square of the symmetric Schur function corresponding to the n-th partition listed in A036036 (colexicographic order).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1
Offset: 1

Views

Author

M. F. Hasler, Jan 21 2020

Keywords

Comments

Not only the rows but also the coefficients in each row are listed in one-to-one correspondence with the partitions as listed in the corresponding row of A036036.
The length of row n in this table equals A000041(2|lambda|), the number of partitions of 2|lambda|, where |lambda| is the sum of parts of the n-th partition listed in A036036. There are A000041(k) rows of length A000041(2k), k >= 1.
The graded colexicographic order is also known as "Abramovitz-Stegun" or better Hindenburg order, cf. Luschny link. (This is the lexicographic order of the partitions padded with '0's to length |lambda| and with parts in increasing order, see column "Ref Colex" on the OEIS Wiki page.)
To each partition lambda is associated a Schur polynomial s_lambda through Jacobi's bialternant formula. The Littlewood-Richardson coefficients are the structure constants in the ring of symmetric functions w.r.t. the basis of Schur functions, i.e., they are the coefficients of products s_mu*s_nu written as linear combinations of the Schur functions s_lambda of degree |lambda| = |mu| + |nu|. (To get this well-defined in terms of symmetric functions, we must consider the polynomials s_mu, s_nu also in |lambda| variables.) This table considers the diagonal of this multiplication table, corresponding to squares of Schur polynomial functions.
Sequence A067855 gives the sum of squares of the coefficients of Sum_{mu |- n} s_mu^2. This corresponds to taking the sum, as vectors, of rows of equal length (equivalent to equal |mu|), and then taking the Euclidean norm squared. For example, for mu |- 2 <=> |mu| = 2, take the sum of rows 2 and 3, to get (1, 1, 2, 1, 1), with sum of squares equal to 8 = A067855(2).
It is known that L-R coefficients for products of "rectangular" partitions contain only 0's and 1's (Okada 1998), therefore rows 5, 8, 10, ... are the first rows that may have terms > 1.

Examples

			The 4th partition listed in A036036 is (1,2); the Schur function (s[1,2])^2 is equal to 0*s[6] + 0*s[1,5] + 1*s[2,4] + 1*s[3,3] + 1*s[1,1,4] + 2*s[1,2,3] + 1*s[2,2,2] + 1*s[1,1,1,3] + 1*s[1,1,2,2] + 0*s[1,1,1,1,2] + 0*s[1,1,1,1,1,1], therefore the 4th row is (0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0).
The table starts:
   n | partition mu | 2|mu| | coefficients of (s_mu)^2
  ---+--------------+-------+---------- ----------------
   1 |     (1)      |   2   | (1, 1)
   2 |     (2)      |   4   | (1, 1, 1, 0, 0)
   3 |    (1,1)     |   4   | (0, 0, 1, 1, 1)
   4 |     (3)      |   6   | (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0)
   5 |    (1,2)     |   6   | (0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0)
   6 |   (1,1,1)    |   6   | (0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1)
		

Crossrefs

Cf. A000041 (partition numbers), A036036 (partitions in colex order).
Cf. A067855 (square of the L2-norm of the vector sum of rows of equal length).

Programs

  • PARI
    s(p,x=eval([Str("'x"i)|i<-[1..#p]]))={my(J(p)=matdet(matrix(#p,#p, i,j, x[i]^p[j]))); J(Vec(p)+[0..#p-1])/J([0..#p-1])} \\ Schur polynomial corresponding to partition p with p(1) <= ... <= p(n) (otherwise the result differs!).
    lead(P,m=1)={while(poldegree(P),m*=variable(P)^poldegree(P);P=pollead(P));m} \\ leading monomial of the polynomial P
    lcoef(P)={while(poldegree(P),P=pollead(P));P} \\ coeff. of leading monomial
    Schur_index(n,B=Map())={forpart(p=n,mapput(B,lead(s(p)),p));B} \\ Initialize the index {leading monomial => partition}
    /* The following computes the row corresponding to partition p, but not very efficiently: it requires lots of memory for |mu| >= 4 (<=> |lambda| >= 8). */
    c(p, n=vecsum(Vec(p))*2, B=Schur_index(n))={my(S=s(vecsort(Vec(p,-n)))^2, C=Map()); while(S, my(c); mapput(C, p=mapget(B,lead(S)), c=lcoef(S)); S-=c*s(Vec(p,-n)); if(default(debug), printf("%+d s%d ",c,Vec(p)))); [iferr(mapget(C,p),E,0) | p<-partitions(n)]} \\ If debug>0 (\g1), prints the s_lambda when found in s_p^2.
    A330985=concat([c([1]),c([2]),c([1,1]),c([3]),c([2,1]),c([1,1,1])])
    A330985_row(n)=for(k=1,oo,(0
    				

Formula

s_mu^2 = Sum_{k=1..A000041(2|mu|)} T(n,k)*s_{p(k,2|mu|)}, where mu is the n-th partition listed in A036036, p(k,2|mu|) is the k-th partition in row 2|mu| of A036036, and s_mu, s_p are the Schur functions (or polynomials in 2|mu| variables) associated to the partitions mu resp. p.

A328891 Irregular table T(n,k) = #{m > 0: m occurs m times in the k-th partition of n, using A&S order (A036036)}, 1 <= k <= A000041(n), n >= 0.

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 0

Views

Author

M. F. Hasler, Oct 29 2019

Keywords

Comments

In the n-th row, the partitions of n are considered in the "Abramowitz and Stegun" or graded (reflected or not) colexicographic ordering, as in A036036 or A036037. For each partition this counts the numbers m > 0 such that there are exactly m parts equal to m in the partition.
Row lengths are A000041(n) = number of partitions of n, the partition numbers.

Examples

			The table reads:
  n \ T(n,k), ...
  0 : 0;   (The only partition of 0 is [], having no number at all in it.)
  1 : 1;   (The only partition of 1 is [1], in which the number m=1 occurs 1 time.)
  2 : 0,0;   (Neither [2] nor [1,1] have some m occurring m times.)
  3 : 0,1,0;   ([3] and [1,1,1] have no m, but [1,2] has m=1 occurring m times.)
  4 : 0,1,1,0,0;   (Here [1,3] and [2,2] have m=1 resp. m=2 occurring m times.)
  5 : 0,1,0,0,2,0,0;   ([1,4] has m=1, [1,2,2] has m=1 and m=2 occurring m times.)
  6 : 0,1,0,0,0,1,0,0,1,0,0;
  7 : 0,1,0,0,0,1,1,1,0,0,1,0,1,0,0;
  (...)
Column 1 = (0,1,0,...) = A063524, characteristic function of {1}: The corresponding partition is [n], except for [] when n=0.
Column 2 = (0,1,1,1,...) = signum(n-2) = A057427(n-2), n >= 2: The corresponding partition is [1, n-1].
Column 3 = A063524(n-3) = A185014(n), characteristic function of {4}: The corresponding partition is [2, n-2] for n >= 4, and [1,1,1] for n = 3.
Column 4 = (0,...) = A000004(n-4), the zero function: The corresponding partition is [3, n-3] for n >= 6, and [1,1,2] for n = 4 and [1,1,3] for n = 5.
Row sums = A276428(n) = sum over all partitions of n of the number of distinct parts m of multiplicity m.
		

Crossrefs

Cf. A036036 (list of partitions in Abramowitz & Stegun or graded reflected colexicographic order).
Cf. A000041 (partition numbers = row lengths).
Cf. A063524 (col.1: chi_{1}), A057427 (col.2: signum), A185014 (col.3: chi_{4}), A000004 (col.4: zero).
Cf. A276427 (frequency of 0, ..., max.value in each row), A276428 (row sums), A276429, A276434, A277101.
Cf. A328806 (row length of A276427(n) = 1 + largest value in row n).

Programs

  • PARI
    apply( A328891_row(n, r=[])={forpart(p=n, my(s, c=1); for(i=1, #p, p[i]==if(i<#p, p[i+1]) && c++ && next; c==p[i] && s++; c=1); r=concat(r,s));r}, [0..12])

A330986 Irregular table read by rows in which the rows list the Littlewood-Richardson coefficients for products of Schur functions s_mu * s_nu, for partitions mu >= nu in the order they are listed in A036036 (colexicographic order).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0
Offset: 1

Views

Author

M. F. Hasler, Jan 23 2020

Keywords

Comments

To each partition lambda is associated a Schur polynomial s_lambda through Jacobi's bialternant formula. To get the symmetric function corresponding to a product s_mu * s_nu, one must consider both polynomials in |mu|+|nu| variables, as obtained by Jacobi's formula when mu and nu are padded with parts 0 to length |mu|+|nu|. Here |mu| is the sum of parts of mu.
The rows of this table list the Littlewood-Richardson coefficients, structure constants in the ring of symmetric functions w.r.t. the basis of Schur functions, which give a product s_mu * s_nu as linear combination of the s_lambda with the lambda listed in row |mu|+|nu| of A036036.
If mu(n) denotes the n-th partition listed in A036036, the rows of this table correspond s_{mu(i)}*s_{mu(j)} with (i,j) = (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), etc. The sequential number of the row (i,j) is i(i-1)/2 + j, cf. comment from Nov 19 2009 in A000027.
The length of row n = i(i-1)/2 + j equals A000041(|mu(i)| + |mu(j)|), the number of partitions of |mu(i)| + |mu(j)|.
The graded colexicographic order is also known as "Abramovitz-Stegun" or better Hindenburg order, cf. Luschny link. (This is also the lexicographic order of the partitions with parts in increasing order and padded with 0's to length |lambda|, see column "Ref Colex" on the OEIS Wiki page.)
Sequence A330985 gives the subsequence of rows n(n+1)/2 corresponding to the "diagonal" nu = mu (or i = j). See there for the link with sequence A067855.

Examples

			The table starts: (first column = row number, last column =  sequence data.)
   n | (i,j) |  mu   |  nu   ||mu|+|nu|| coefficients of s_mu*s_nu
  ---+-------+-------+-------+---------+--------------------------
   1 | (1,1) |  (1)  |  (1)  |    2    | (1, 1)
   2 | (2,1) |  (2)  |  (1)  |    3    | (1, 1, 0)
   3 | (2,2) |  (2)  |  (2)  |    4    | (1, 1, 1, 0, 0)
   4 | (3,1) | (1,1) |  (1)  |    3    | (0, 1, 1)
   5 | (3,2) | (1,1) |  (2)  |    4    | (0, 1, 0, 1, 0)
   6 | (3,3) | (1,1) | (1,1) |    4    | (0, 0, 1, 1, 1)
   7 | (4,1) |  (3)  |  (1)  |    4    | (1, 1, 0, 0, 0)
   8 | (4,2) |  (3)  |  (2)  |    5    | (1, 1, 1, 0, 0, 0, 0)
   9 | (4,3) |  (3)  | (1,1) |    5    | (0, 1, 0, 1, 0, 0, 0)
  10 | (4,4) |  (3)  |  (3)  |    6    | (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0)
  11 | (5,1) | (1,2) |  (1)  |    4    | (0, 1, 1, 1, 0)
  12 | (5,2) | (1,2) |  (2)  |    5    | (0, 1, 1, 1, 1, 0, 0)
  13 | (5,3) | (1,2) | (1,1) |    5    | (0, 0, 1, 1, 1, 1, 0)
  14 | (5,4) | (1,2) |  (3)  |    6    | (0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0)
  15 | (5,5) | (1,2) | (1,2) |    6    | (0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0)
Row 1 is (1, 1) since s[1,0] = x1 + x2 squared is 1*s[2,0] + 1*s[1,1], where s[2,0] = x1^2 + x1*x2 + x2^2 and s[1,1] = x1*x2 are the two Schur polynomials associated to the two partitions of 2.
Row 2 is (1, 1, 0) since the product of s[1,0,0] = x1 + x2 + x3 and s[2,0,0]= x1^2 + x2^2 + x3^3 + x1*x2 + x1*x3 + x2*x3 is 1*s[3,0,0] + 1*s[2,1,0] + 0*s[1,1,1], where s[3,0,0] = x1^3 + x1^2*(x2 + x3) + cyclic + x1*x2*x3, s[2,1,0] = x1^2*(x2 + x3) + cyclic + 2*x1*x2*x3 and s[1,1,1] = x1*x2*x3 are the Schur polynomials associated to the three partitions of 3.
		

Crossrefs

Cf. A000041 (partition numbers), A036036 (partitions in colex order).
Cf. A067855 (sum of squares of coefficients of sum_{mu|-n} s_mu^2).
Cf. A330985 (rows n(n+1)/2 corresponding to nu = mu).

Programs

  • PARI
    s(p,x=eval([Str("'x"i)|i<-[1..#p]]))={my(J(p)=matdet(matrix(#p,#p, i,j, x[i]^p[j]))); J(Vec(p)+[0..#p-1])/J([0..#p-1])} \\ Schur polynomial corresponding to partition p with p(1) <= ... <= p(n) (otherwise the result differs!).
    lead(P,m=1)={while(poldegree(P),m*=variable(P)^poldegree(P);P=pollead(P));m} \\ leading monomial of the polynomial P
    lcoef(P)={while(poldegree(P),P=pollead(P));P} \\ coeff. of leading monomial
    Schur_index(n,B=Map())={forpart(p=n,mapput(B,lead(s(p)),p));B} \\ Compute the index {leading monomial => partition}
    Schur_coeff(S, n=#variables(S), B=Schur_index(n))={ my(C=Map(),c,p); while(S, mapput(C, p=mapget(B,lead(S)), c=lcoef(S)); S-=c*s(Vec(p,-n)); if(default(debug), printf("%+d s%d ",c,Vec(p)))); [iferr(mapget(C,p),E,0) | p<-partitions(n)]} \\ Compute coords of S in Schur basis. If debug>0 (\g1), prints the s_lambda when found in s_p^2.
    {LR_coeff(mu, nu, n=vecsum(Vec(mu))+vecsum(Vec(nu)))= Schur_coeff(s(vecsort(Vec(mu,-n)))*s(vecsort(Vec(nu,-n))),n)}
    P=concat(vector(3,n,partitions(n)))/*first few rows of A036036*/
    A=concat(vector(5,i, vector(i,j, LR_coeff(P[i],P[j]))))

Formula

s_mu*s_nu = Sum_{k=1..A000041(|mu|+|nu|)} T(n,k)*s_{p(k,|mu|+|nu|)}, where n = i(i-1)/2 + j if mu and nu are the i-th resp. j-th partition listed in A036036, and p(k,|mu|+|nu|) is the k-th partition in row |mu|+|nu| of A036036.

A112798 Table where n-th row is factorization of n, with each prime p_i replaced by i.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 4, 1, 1, 1, 2, 2, 1, 3, 5, 1, 1, 2, 6, 1, 4, 2, 3, 1, 1, 1, 1, 7, 1, 2, 2, 8, 1, 1, 3, 2, 4, 1, 5, 9, 1, 1, 1, 2, 3, 3, 1, 6, 2, 2, 2, 1, 1, 4, 10, 1, 2, 3, 11, 1, 1, 1, 1, 1, 2, 5, 1, 7, 3, 4, 1, 1, 2, 2, 12, 1, 8, 2, 6, 1, 1, 1, 3, 13, 1, 2, 4, 14, 1, 1, 5, 2, 2, 3, 1, 9, 15, 1, 1, 1, 1
Offset: 2

Views

Author

Keywords

Comments

This is an enumeration of all partitions.
Technically this is an enumeration of all multisets (finite weakly increasing sequences of positive integers) rather than integer partitions. - Gus Wiseman, Dec 12 2016
A000040(a(n)) is a prime factor of A082288(n). - Reinhard Zumkeller, Feb 03 2008
Row n is the partition with Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1..r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. For a given n, the 2nd Maple program yields row n; for example, we obtain at once B(2436) = [1,1,2,4,10]. - Emeric Deutsch, Jun 04 2015
From Emeric Deutsch, May 05 2015: (Start)
Number of entries in row n is bigomega(n) (i.e., the number of prime factors of n, multiplicities included).
Product of entries in row n = A003963(n).
Row n contains the Matula numbers of the rooted trees obtained from the rooted tree with Matula number n by deleting the edges emanating from the root. Example: row 8 is 1,1,1; indeed the rooted tree with Matula number 8 is \|/ and deleting the edges emanating from the root we obtain three one-vertex trees, having Matula numbers 1, 1, 1. Example: row 7 is 4; indeed, the rooted tree with Matula number 7 is Y and deleting the edges emanating from the root we obtain the rooted tree V, having Matula number 4.
The Matula (or Matula-Goebel) number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m >= 2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. (End)

Examples

			Row 20 is 1,1,3 because the prime factors of 20, namely 2,2,5 are the 1st, 1st, 3rd primes.
Table begins:
  1;
  2;
  1, 1;
  3;
  1, 2;
  4;
  1, 1, 1;
  ...
The sequence of all finite multisets of positive integers begins: (), (1), (2), (11), (3), (12), (4), (111), (22), (13), (5), (112), (6), (14), (23), (1111), (7), (122), (8), (113), (24), (15), (9), (1112), (33), (16), (222), (114). - _Gus Wiseman_, Dec 12 2016
		

Crossrefs

Row lengths are A001222. Cf. A000040, A027746, A000720, A036036.
Cf. A056239 (row sums).
Cf. A003963 (row products).

Programs

  • Haskell
    a112798 n k = a112798_tabf !! (n-2) !! (n-1)
    a112798_row n = a112798_tabf !! (n-2)
    a112798_tabf = map (map a049084) $ tail a027746_tabf
    -- Reinhard Zumkeller, Aug 04 2014
    
  • Maple
    T:= n-> sort([seq(numtheory[pi](i[1])$i[2], i=ifactors(n)[2])])[]:
    seq(T(n), n=2..50);  # Alois P. Heinz, Aug 09 2012
    with(numtheory): B := proc (n) local nn, j, m: nn := op(2, ifactors(n)); for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: # Emeric Deutsch, Jun 04 2015. (This is equivalent to the first Maple program.)
  • Mathematica
    PrimePi /@ Flatten[Table[#1, {#2}] & @@@ FactorInteger@ #] & /@ Range@ 60 // Flatten // Rest (* Michael De Vlieger, May 09 2015 *)
  • PARI
    row(n)=my(v=List(),f=factor(n)); for(i=1,#f~,for(j=1,f[i,2], listput(v,primepi(f[i,1])))); Vec(v) \\ Charles R Greathouse IV, Nov 09 2021

Formula

T(n,k) = A000720(A027746(n,k)); A027746(n,k) = A000040(T(n,k)).
Also T(n,k) = A049084(A027746(n,k)). - Reinhard Zumkeller, Aug 04 2014

A066099 Triangle read by rows, in which row n lists the compositions of n in reverse lexicographic order.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 3, 2, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 4, 1, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 2, 3, 1, 1, 1, 2, 4, 2, 3
Offset: 1

Views

Author

Alford Arnold, Dec 30 2001

Keywords

Comments

The representation of the compositions (for fixed n) is as lists of parts, the order between individual compositions (for the same n) is (list-)reversed lexicographic; see the example by Omar E. Pol. - Joerg Arndt, Sep 03 2013
This is the standard ordering for compositions in this database; it is similar to the Mathematica ordering for partitions (A080577). Other composition orderings include A124734 (similar to the Abramowitz & Stegun ordering for partitions, A036036), A108244 (similar to the Maple partition ordering, A080576), etc (see crossrefs).
Factorize each term in A057335; sequence records the values of the resulting exponents. It also runs through all possible permutations of multiset digits.
This can be regarded as a table in two ways: with each composition as a row, or with the compositions of each integer as a row. The first way has A000120 as row lengths and A070939 as row sums; the second has A001792 as row lengths and A001788 as row sums. - Franklin T. Adams-Watters, Nov 06 2006
This sequence includes every finite sequence of positive integers. - Franklin T. Adams-Watters, Nov 06 2006
Compositions (or ordered partitions) are also generated in sequence A101211. - Alford Arnold, Dec 12 2006
The equivalent sequence for partitions is A228531. - Omar E. Pol, Sep 03 2013
The sole partition of zero has no components, not a single component of length one. Hence the first nonempty row is row 1. - Franklin T. Adams-Watters, Apr 02 2014 [Edited by Andrey Zabolotskiy, May 19 2018]
See sequence A261300 for another version where the terms of each composition are concatenated to form one single integer: (0, 1, 2, 11, 3, 21, 12, 111,...). This also shows how the terms can be obtained from the binary numbers A007088, cf. Arnold's first Example. - M. F. Hasler, Aug 29 2015
The k-th composition in the list is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This is described as the standard ordering used in the OEIS, although the sister sequence A228351 is also sometimes considered to be canonical. Both sequences define a bijective correspondence between nonnegative integers and integer compositions. - Gus Wiseman, May 19 2020
First differences of A030303 = positions of bits 1 in the concatenation A030190 (= A030302) of numbers written in binary (A007088). - Indices of record values (= first occurrence of n) are given by A005183: a(A005183(n)) = n, cf. FORMULA for more. - M. F. Hasler, Oct 12 2020
The geometric mean approaches the Somos constant (A112302). - Jwalin Bhatt, Feb 10 2025

Examples

			A057335 begins 1 2 4 6 8 12 18 30 16 24 36 ... so we can write
  1 2 1 3 2 1 1 4 3 2 2 1 1 1 1 ...
  . . 1 . 1 2 1 . 1 2 1 3 2 1 1 ...
  . . . . . . 1 . . . 1 . 1 2 1 ...
  . . . . . . . . . . . . . . 1 ...
and the columns here gives the rows of the triangle, which begins
  1
  2; 1 1
  3; 2 1; 1 2; 1 1 1
  4; 3 1; 2 2; 2 1 1; 1 3; 1 2 1; 1 1 2; 1 1 1 1
  ...
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms:
  -----------------------------------
  n  j       Diagram   Composition j
  -----------------------------------
  .               _
  1  1           |_|   1;
  .             _ _
  2  1         |  _|   2,
  2  2         |_|_|   1, 1;
  .           _ _ _
  3  1       |    _|   3,
  3  2       |  _|_|   2, 1,
  3  3       | |  _|   1, 2,
  3  4       |_|_|_|   1, 1, 1;
  .         _ _ _ _
  4  1     |      _|   4,
  4  2     |    _|_|   3, 1,
  4  3     |   |  _|   2, 2,
  4  4     |  _|_|_|   2, 1, 1,
  4  5     | |    _|   1, 3,
  4  6     | |  _|_|   1, 2, 1,
  4  7     | | |  _|   1, 1, 2,
  4  8     |_|_|_|_|   1, 1, 1, 1;
(End)
		

Crossrefs

Lists of compositions of integers: this sequence (reverse lexicographic order; minus one gives A108730), A228351 (reverse colexicographic order - every composition is reversed; minus one gives A163510), A228369 (lexicographic), A228525 (colexicographic), A124734 (length, then lexicographic; minus one gives A124735), A296774 (length, then reverse lexicographic), A337243 (length, then colexicographic), A337259 (length, then reverse colexicographic), A296773 (decreasing length, then lexicographic), A296772 (decreasing length, then reverse lexicographic), A337260 (decreasing length, then colexicographic), A108244 (decreasing length, then reverse colexicographic), also A101211 and A227736 (run lengths of bits).
Cf. row length and row sums for different splittings into rows: A000120, A070939, A001792, A001788.
Cf. lists of partitions of integers, or multisets of integers: A026791 and crosserfs therein, A112798 and crossrefs therein.
See link for additional crossrefs pertaining to standard compositions.
A related ranking of finite sets is A048793/A272020.

Programs

  • Haskell
    a066099 = (!!) a066099_list
    a066099_list = concat a066099_tabf
    a066099_tabf = map a066099_row [1..]
    a066099_row n = reverse $ a228351_row n
    -- (each composition as a row)
    -- Peter Kagey, Aug 25 2016
    
  • Mathematica
    Table[FactorInteger[Apply[Times, Map[Prime, Accumulate @ IntegerDigits[n, 2]]]][[All, -1]], {n, 41}] // Flatten (* Michael De Vlieger, Jul 11 2017 *)
    stc[n_] := Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n, 2]], 1], 0]] // Reverse;
    Table[stc[n], {n, 0, 20}] // Flatten (* Gus Wiseman, May 19 2020 *)
    Table[Reverse @ LexicographicSort @ Flatten[Permutations /@ Partitions[n], 1], {n, 10}] // Flatten (* Eric W. Weisstein, Jun 26 2023 *)
  • PARI
    arow(n) = {local(v=vector(n),j=0,k=0);
       while(n>0,k++; if(n%2==1,v[j++]=k;k=0);n\=2);
       vector(j,i,v[j-i+1])} \\ returns empty for n=0. - Franklin T. Adams-Watters, Apr 02 2014
    
  • Python
    from itertools import islice
    from itertools import accumulate, count, groupby, islice
    def A066099_gen():
        for i in count(1):
            yield [len(list(g)) for _,g in groupby(accumulate(int(b) for b in bin(i)[2:]))]
    A066099 = list(islice(A066099_gen(), 120))  # Jwalin Bhatt, Feb 28 2025
  • Sage
    def a_row(n): return list(reversed(Compositions(n)))
    flatten([a_row(n) for n in range(1,6)]) # Peter Luschny, May 19 2018
    

Formula

From M. F. Hasler, Oct 12 2020: (Start)
a(n) = A030303(n+1) - A030303(n).
a(A005183(n)) = n; a(A005183(n)+1) = n-1 (n>1); a(A005183(n)+2) = 1. (End)

Extensions

Edited with additional terms by Franklin T. Adams-Watters, Nov 06 2006
0th row removed by Andrey Zabolotskiy, May 19 2018

A122111 Self-inverse permutation of the positive integers induced by partition enumeration in A112798 and partition conjugation.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 10, 64, 24, 18, 7, 128, 15, 256, 20, 36, 48, 512, 14, 27, 96, 25, 40, 1024, 30, 2048, 11, 72, 192, 54, 21, 4096, 384, 144, 28, 8192, 60, 16384, 80, 50, 768, 32768, 22, 81, 45, 288, 160, 65536, 35, 108, 56, 576, 1536, 131072, 42
Offset: 1

Views

Author

Keywords

Comments

Factor n; replace each prime(i) with i, take the conjugate partition, replace parts i with prime(i) and multiply out.
From Antti Karttunen, May 12-19 2014: (Start)
For all n >= 1, A001222(a(n)) = A061395(n), and vice versa, A061395(a(n)) = A001222(n).
Because the partition conjugation doesn't change the partition's total sum, this permutation preserves A056239, i.e., A056239(a(n)) = A056239(n) for all n.
(Similarly, for all n, A001221(a(n)) = A001221(n), because the number of steps in the Ferrers/Young-diagram stays invariant under the conjugation. - Note added Apr 29 2022).
Because this permutation commutes with A241909, in other words, as a(A241909(n)) = A241909(a(n)) for all n, from which follows, because both permutations are self-inverse, that a(n) = A241909(a(A241909(n))), it means that this is also induced when partitions are conjugated in the partition enumeration system A241918. (Not only in A112798.)
(End)
From Antti Karttunen, Jul 31 2014: (Start)
Rows in arrays A243060 and A243070 converge towards this sequence, and also, assuming no surprises at the rate of that convergence, this sequence occurs also as the central diagonal of both.
Each even number is mapped to a unique term of A102750 and vice versa.
Conversely, each odd number (larger than 1) is mapped to a unique term of A070003, and vice versa. The permutation pair A243287-A243288 has the same property. This is also used to induce the permutations A244981-A244984.
Taking the odd bisection and dividing out the largest prime factor results in the permutation A243505.
Shares with A245613 the property that each term of A028260 is mapped to a unique term of A244990 and each term of A026424 is mapped to a unique term of A244991.
Conversely, with A245614 (the inverse of above), shares the property that each term of A244990 is mapped to a unique term of A028260 and each term of A244991 is mapped to a unique term of A026424.
(End)
The Maple program follows the steps described in the first comment. The subprogram C yields the conjugate partition of a given partition. - Emeric Deutsch, May 09 2015
The Heinz number of the partition that is conjugate to the partition with Heinz number n. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r). Example: a(3) = 4. Indeed, the partition with Heinz number 3 is [2]; its conjugate is [1,1] having Heinz number 4. - Emeric Deutsch, May 19 2015

Crossrefs

Cf. A088902 (fixed points).
Cf. A112798, A241918 (conjugates the partitions listed in these two tables).
Cf. A243060 and A243070. (Limit of rows in these arrays, and also their central diagonal).
Cf. A319988 (parity of this sequence for n > 1), A336124 (a(n) mod 4).
{A000027, A122111, A241909, A241916} form a 4-group.
{A000027, A122111, A153212, A242419} form also a 4-group.
Cf. also array A350066 [A(i, j) = a(a(i)*a(j))].

Programs

  • Maple
    with(numtheory): c := proc (n) local B, C: B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: C := proc (P) local a: a := proc (j) local c, i: c := 0; for i to nops(P) do if j <= P[i] then c := c+1 else  end if end do: c end proc: [seq(a(k), k = 1 .. max(P))] end proc: mul(ithprime(C(B(n))[q]), q = 1 .. nops(C(B(n)))) end proc: seq(c(n), n = 1 .. 59); # Emeric Deutsch, May 09 2015
    # second Maple program:
    a:= n-> (l-> mul(ithprime(add(`if`(jAlois P. Heinz, Sep 30 2017
  • Mathematica
    A122111[1] = 1; A122111[n_] := Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@Length@l, m = Min@l}, Length@Union@l]] &@Catenate[ConstantArray[PrimePi[#1], #2] & @@@ FactorInteger@n]; Array[A122111, 60] (* JungHwan Min, Aug 22 2016 *)
    a[n_] := Function[l, Product[Prime[Sum[If[jJean-François Alcover, Sep 23 2020, after Alois P. Heinz *)
  • PARI
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m)); \\ Antti Karttunen, Jul 20 2020
    
  • Python
    from sympy import factorint, prevprime, prime, primefactors
    from operator import mul
    def a001222(n): return 0 if n==1 else a001222(n/primefactors(n)[0]) + 1
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a105560(n): return 1 if n==1 else prime(a001222(n))
    def a(n): return 1 if n==1 else a105560(n)*a(a064989(n))
    [a(n) for n in range(1, 101)] # Indranil Ghosh, Jun 15 2017
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000040 (A001222 n)) (A122111 (A064989 n)))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000079 (A241917 n)) (A003961 (A122111 (A052126 n))))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (expt (A000040 (A071178 n)) (A241919 n)) (A242378bi (A071178 n) (A122111 (A051119 n))))))
    ;; Antti Karttunen, May 12 2014
    

Formula

From Antti Karttunen, May 12-19 2014: (Start)
a(1) = 1, a(p_i) = 2^i, and for other cases, if n = p_i1 * p_i2 * p_i3 * ... * p_{k-1} * p_k, where p's are primes, not necessarily distinct, sorted into nondescending order so that i1 <= i2 <= i3 <= ... <= i_{k-1} <= ik, then a(n) = 2^(ik-i_{k-1}) * 3^(i_{k-1}-i_{k-2}) * ... * p_{i_{k-1}}^(i2-i1) * p_ik^(i1).
This can be implemented as a recurrence, with base case a(1) = 1,
and then using any of the following three alternative formulas:
a(n) = A105560(n) * a(A064989(n)) = A000040(A001222(n)) * a(A064989(n)). [Cf. the formula for A242424.]
a(n) = A000079(A241917(n)) * A003961(a(A052126(n))).
a(n) = (A000040(A071178(n))^A241919(n)) * A242378(A071178(n), a(A051119(n))). [Here ^ stands for the ordinary exponentiation, and the bivariate function A242378(k,n) changes each prime p(i) in the prime factorization of n to p(i+k), i.e., it's the result of A003961 iterated k times starting from n.]
a(n) = 1 + A075157(A129594(A075158(n-1))). [Follows from the commutativity with A241909, please see the comments section.]
(End)
From Antti Karttunen, Jul 31 2014: (Start)
As a composition of related permutations:
a(n) = A153212(A242419(n)) = A242419(A153212(n)).
a(n) = A241909(A241916(n)) = A241916(A241909(n)).
a(n) = A243505(A048673(n)).
a(n) = A064216(A243506(n)).
Other identities. For all n >= 1, the following holds:
A006530(a(n)) = A105560(n). [The latter sequence gives greatest prime factor of the n-th term].
a(2n)/a(n) = A105560(2n)/A105560(n), which is equal to A003961(A105560(n))/A105560(n) when n > 1.
A243505(n) = A052126(a(2n-1)) = A052126(a(4n-2)).
A066829(n) = A244992(a(n)) and vice versa, A244992(n) = A066829(a(n)).
A243503(a(n)) = A243503(n). [Because partition conjugation does not change the partition size.]
A238690(a(n)) = A238690(n). - per Matthew Vandermast's note in that sequence.
A238745(n) = a(A181819(n)) and a(A238745(n)) = A181819(n). - per Matthew Vandermast's note in A238745.
A181815(n) = a(A181820(n)) and a(A181815(n)) = A181820(n). - per Matthew Vandermast's note in A181815.
(End)
a(n) = A181819(A108951(n)). [Prime shadow of the primorial inflation of n] - Antti Karttunen, Apr 29 2022

A063834 Twice partitioned numbers: the number of ways a number can be partitioned into not necessarily different parts and each part is again so partitioned.

Original entry on oeis.org

1, 1, 3, 6, 15, 28, 66, 122, 266, 503, 1027, 1913, 3874, 7099, 13799, 25501, 48508, 88295, 165942, 299649, 554545, 997281, 1817984, 3245430, 5875438, 10410768, 18635587, 32885735, 58399350, 102381103, 180634057, 314957425, 551857780, 958031826, 1667918758
Offset: 0

Views

Author

Wouter Meeussen, Aug 21 2001

Keywords

Comments

These are different from plane partitions.
For ordered partitions of partitions see A055887 which may be computed from A036036 and A048996. - Alford Arnold, May 19 2006
Twice partitioned numbers correspond to triangles (or compositions) in the multiorder of integer partitions. - Gus Wiseman, Oct 28 2015

Examples

			G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + 266*x^8 + ...
If n=6, a possible first partitioning is (3+3), resulting in the following second partitionings: ((3),(3)), ((3),(2+1)), ((3),(1+1+1)), ((2+1),(3)), ((2+1),(2+1)), ((2+1),(1+1+1)), ((1+1+1),(3)), ((1+1+1),(2+1)), ((1+1+1),(1+1+1)).
		

Crossrefs

The strict case is A296122.
Row sums of A321449.
Column k=2 of A323718.
Without singletons we have A327769, A358828, A358829.
For odd lengths we have A358823, A358824.
For distinct lengths we have A358830, A358912.
For strict partitions see A358914, A382524.
A000041 counts integer partitions, strict A000009.
A001970 counts multiset partitions of integer partitions.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1)+`if`(i>n, 0, numbpart(i)*b(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 26 2015
  • Mathematica
    Table[Plus @@ Apply[Times, IntegerPartitions[i] /. i_Integer :> PartitionsP[i], 2], {i, 36}]
    (* second program: *)
    b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i > n, 0, PartitionsP[i]*b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 19 2016 */

Formula

G.f.: 1/Product_{k>0} (1-A000041(k)*x^k). n*a(n) = Sum_{k=1..n} b(k)*a(n-k), a(0) = 1, where b(k) = Sum_{d|k} d*A000041(d)^(k/d) = 1, 5, 10, 29, 36, 110, 106, ... . - Vladeta Jovovic, Jun 19 2003
From Vaclav Kotesovec, Mar 27 2016: (Start)
a(n) ~ c * 5^(n/4), where
c = 96146522937.7161898848278970039269600938032826... if n mod 4 = 0
c = 96146521894.9433858914667933636782092683849082... if n mod 4 = 1
c = 96146522937.2138934755566928890704687838407524... if n mod 4 = 2
c = 96146521894.8218716328341714149619262713426755... if n mod 4 = 3
(End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 26 2015

A080577 Triangle in which n-th row lists all partitions of n, in graded reverse lexicographic ordering.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 5, 1, 1, 4, 3, 4, 2, 1, 4, 1, 1, 1, 3, 3, 1, 3, 2
Offset: 1

Views

Author

N. J. A. Sloane, Mar 23 2003

Keywords

Comments

This is the "Mathematica" ordering of the partitions, referenced in numerous other sequences. The partitions of each integer are in reverse order of the conjugates of the partitions in Abramowitz and Stegun order (A036036). They are in the reverse of the order of the partitions in Maple order (A080576). - Franklin T. Adams-Watters, Oct 18 2006
The graded reverse lexicographic ordering of the partitions is often referred to as the "Canonical" ordering of the partitions. - Daniel Forgues, Jan 21 2011
Also the "MAGMA" ordering of the partitions. - Jason Kimberley, Oct 28 2011
Also an intuitive ordering described but not formalized in [Hardy and Wright] the first four editions of which precede [Abramowitz and Stegun]. - L. Edson Jeffery, Aug 03 2013
Also the "Sage" ordering of the partitions. - Peter Luschny, Aug 12 2013
While this is the order used for the constructive function "IntegerPartitions", it is different from Mathematica's canonical ordering of finite expressions, the latter giving A036036 if parts of partitions are read in reversed (weakly increasing) order, or A334301 if in the usual (weakly decreasing) order. - Gus Wiseman, May 08 2020

Examples

			First five rows are:
  {{1}}
  {{2}, {1, 1}}
  {{3}, {2, 1}, {1, 1, 1}}
  {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}
  {{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}
Up to the fifth row, this is exactly the same as the colexicographic ordering A036037. The first row which differs is the sixth one, which reads ((6), (5,1), (4,2), (4,1,1), (3,3), (3,2,1), (3,1,1,1), (2,2,2), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1,1)). - _M. F. Hasler_, Jan 23 2020
From _Gus Wiseman_, May 08 2020: (Start)
The sequence of all partitions begins:
  ()         (3,2)        (2,1,1,1,1)    (2,2,1,1,1)
  (1)        (3,1,1)      (1,1,1,1,1,1)  (2,1,1,1,1,1)
  (2)        (2,2,1)      (7)            (1,1,1,1,1,1,1)
  (1,1)      (2,1,1,1)    (6,1)          (8)
  (3)        (1,1,1,1,1)  (5,2)          (7,1)
  (2,1)      (6)          (5,1,1)        (6,2)
  (1,1,1)    (5,1)        (4,3)          (6,1,1)
  (4)        (4,2)        (4,2,1)        (5,3)
  (3,1)      (4,1,1)      (4,1,1,1)      (5,2,1)
  (2,2)      (3,3)        (3,3,1)        (5,1,1,1)
  (2,1,1)    (3,2,1)      (3,2,2)        (4,4)
  (1,1,1,1)  (3,1,1,1)    (3,2,1,1)      (4,3,1)
  (5)        (2,2,2)      (3,1,1,1,1)    (4,2,2)
  (4,1)      (2,2,1,1)    (2,2,2,1)      (4,2,1,1)
The triangle with partitions shown as Heinz numbers (A129129) begins:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  28  25  30  40  27  36  48  64
  17  26  33  44  35  42  56  50  45  60  80  54  72  96 128
(End)
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, Fifth edition, 1979, p. 273.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 287.

Crossrefs

See A080576 Maple (graded reflected lexicographic) ordering.
See A036036 for the Hindenburg (graded reflected colexicographic) ordering (listed in the Abramowitz and Stegun Handbook).
See A036037 for graded colexicographic ordering.
See A228100 for the Fenner-Loizou (binary tree) ordering.
Differs from A036037 at a(48).
See A322761 for a compressed version.
Lexicographically ordered reversed partitions are A026791.
Reverse-colexicographically ordered partitions are A026792.
Compositions under this ordering are A066099.
Distinct parts of these partitions are counted by A115623.
Taking Heinz numbers gives A129129.
Lexicographically ordered partitions are A193073.
Colexicographically ordered partitions are A211992.
Reading partitions in reverse (weakly increasing) order gives A228531.
Lengths of these partitions are A238966.
Sorting partitions by Heinz number gives A296150.
The maxima of these partitions are A331581.
The length-sensitive version is A334439.

Programs

  • Magma
    &cat[&cat Partitions(n):n in[1..7]]; // Jason Kimberley, Oct 28 2011
    
  • Maple
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> x[], b(n$2))[]:
    seq(T(n), n=1..8);  # Alois P. Heinz, Jan 29 2020
  • Mathematica
    <Jean-François Alcover, Dec 10 2012 *)
    revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Join@@Table[Sort[IntegerPartitions[n],revlexsort],{n,0,8}] (* Gus Wiseman, May 08 2020 *)
  • PARI
    A080577_row(n)={vecsort(apply(t->Vecrev(t),partitions(n)),,4)} \\ M. F. Hasler, Jan 21 2020
  • Sage
    L = []
    for n in range(8): L += list(Partitions(n))
    flatten(L)   # Peter Luschny, Aug 12 2013
    

A036040 Irregular triangle of multinomial coefficients, read by rows (version 1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 3, 6, 1, 1, 5, 10, 10, 15, 10, 1, 1, 6, 15, 10, 15, 60, 15, 20, 45, 15, 1, 1, 7, 21, 35, 21, 105, 70, 105, 35, 210, 105, 35, 105, 21, 1, 1, 8, 28, 56, 35, 28, 168, 280, 210, 280, 56, 420, 280, 840, 105, 70, 560, 420, 56, 210, 28, 1, 1, 9, 36, 84, 126, 36, 252
Offset: 1

Views

Author

Keywords

Comments

This is different from A080575 and A178867.
T(n,m) = count of set partitions of n with block lengths given by the m-th partition of n.
From Tilman Neumann, Oct 05 2008: (Start)
These are also the coefficients occurring in complete Bell polynomials, Faa di Bruno's formula (in its simplest form) and computation of moments from cumulants.
Though the Bell polynomials seem quite unwieldy, they can be computed easily as the determinant of an n-dimensional square matrix. (See, e.g., Coffey (2006) and program below.)
The complete Bell polynomial of the first n primes gives A007446. (End)
From Tom Copeland, Apr 29 2011: (Start)
A relation between partition polynomials formed from these "refined" Stirling numbers of the second kind and umbral operator trees and Lagrange inversion is presented in the link "Lagrange a la Lah".
For simple diagrams of the relation between connected graphs, cumulants, and A036040, see the references on statistical physics below. In some sense, these graphs are duals of the umbral bouquets presented in "Lagrange a la Lah". (End)
These M3 (Abramowitz-Stegun) partition polynomials are the complete Bell polynomials (see a comment above) with recurrence (see the Wikipedia link) B_0 = 1, B_n = Sum_{k=0..n-1} binomial(n-1,k) * B_{n-1-k}*x[k+1], n >= 1. - Wolfdieter Lang, Aug 31 2016
With the indeterminates (x_1, x_2, x_3,...) = (t, -c_2*t, -c_3*t, ...) with c_n > 0, umbrally B(n,a.) = B(n,t)|{t^n = a_n} = 0 and B(j,a.)B(k,a.) = B(j,t)B(k,t)|{t^n =a_n} = d_{j,k} >= 0 is the coefficient of x^j/j!*y^k/k! in the Taylor series expansion of the formal group law FGL(x,y) = f[f^{-1}(x)+f^{-1}(y)], where a_n are the inversion partition polynomials for calculating f(x) from the coefficients of the series expansion of f^{-1}(x) given in A134685. - Tom Copeland, Feb 09 2018
For applications to functionals in quantum field theory, see Figueroa et al., Brouder, Kreimer and Yeats, and Balduf. In the last two papers, the Bell polynomials with the indeterminates (x_1, x_2, x_3,...) = (c_1, 2!c_2, 3!c_3, ...) are equivalent to the partition polynomials of A130561 in the indeterminates c_n. - Tom Copeland, Dec 17 2019
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced below. (End)
From Tom Copeland, Jun 12 2021: (Start)
These Bell polynomials and their relations to the Faa di Bruno Hopf bialgebra, correlation functions in quantum field theory, and the moment-cumulant duality are given on pp. 134 -144 of Zeidler.
An interpretation of the coefficients of the polynomials is given in expositions of the exponential formula, or principle, in Cameron et al., Duchamp, Duchamp et al., Labelle and Leroux, and Scott and Sokal along with some history. The simplest applications of this principle are given in A060540. (End)

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,  1;
  1,  4,  3,  6,  1;
  1,  5, 10, 10, 15, 10,  1;
  1,  6, 15, 10, 15, 60, 15, 20, 45, 15, 1;
  ...
The first partition of 3 (i.e., (3)) induces the set {{1, 2, 3}}, so T(3, 1) = 1; the second one (i.e., (2, 1)) the sets {{1, 2}, {3}}, {{1, 3}, {2}}, and {{2, 3}, {1}}, so T(3, 2) = 3; and the third one (i.e., (1, 1, 1)) the set {{1}, {2}, {3}}, so T(3, 1) = 1. - _Lorenzo Sauras Altuzarra_, Jun 20 2022
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "M_3".
  • C. Itzykson and J. Drouffe, Statistical Field Theory Vol. 2, Cambridge Univ. Press, 1989, page 412.
  • S. Ma, Statistical Mechanics, World Scientific, 1985, page 205.
  • E. Zeidler, Quantum Field Theory II: Quantum Electrodynamics, Springer, 2009.

Crossrefs

See A080575 for another version.
Row sums are the Bell numbers A000110.
Cf. A000040, A007446, A178866 and A178867 (version 3).
Cf. A127671.
Cf. A060540 for the coefficients of the compositions e^{ x^m/m! }.

Programs

  • Maple
    with(combinat): nmax:=8: for n from 1 to nmax do P(n):=sort(partition(n)): for r from 1 to numbpart(n) do B(r):=P(n)[r] od: for m from 1 to numbpart(n) do s:=0: j:=0: while sA036040(n,m):= n!/(mul((t!)^q(t)*q(t)!,t=1..n)); od: od: seq(seq(A036040(n, m), m=1..numbpart(n)), n=1..nmax); # Johannes W. Meijer, Jun 21 2010, Jul 12 2016
  • Mathematica
    runs[li:{__Integer}] := ((Length/@ Split[ # ]))&[Sort@ li]; Table[temp=Map[Reverse, Sort@ (Sort/@ IntegerPartitions[w]), {1}]; Apply[Multinomial, temp, {1}]/Apply[Times, (runs/@ temp)!, {1}], {w, 6}]
  • MuPAD
    completeBellMatrix := proc(x,n) // x - vector x[1]...x[m], m>=n
    local i,j,M; begin
    M := matrix(n,n): // zero-initialized
    for i from 1 to n-1 do M[i,i+1] := -1: end_for:
    for i from 1 to n do for j from 1 to i do
        M[i,j] := binomial(i-1,j-1)*x[i-j+1]: end_for: end_for:
    return (M): end_proc:
    completeBellPoly := proc(x, n) begin
    return (linalg::det(completeBellMatrix (x,n))): end_proc:
    for i from 1 to 10 do print(i, completeBellPoly(x,i)): end_for:
    // Tilman Neumann, Oct 05 2008
    
  • PARI
    A036040_poly(n,V=vector(n,i,eval(Str('x,i))))={matdet(matrix(n,n,i,j,if(j<=i,binomial(i-1,j-1)*V[n-i+j],-(j==i+1))))} \\ Row n of the sequence is made of the coefficients of the monomials ordered by increasing total order (sum of powers) and then lexicographically. - M. F. Hasler, Nov 16 2013, updated Jul 12 2014
    
  • Sage
    from collections import Counter
    def ASPartitions(n, k):
        Q = [p.to_list() for p in Partitions(n, length=k)]
        for q in Q: q.reverse()
        return sorted(Q)
    def A036040_row(n):
        h = lambda p: product(map(factorial, Counter(p).values()))
        return [multinomial(p)//h(p) for k in (0..n) for p in ASPartitions(n, k)]
    for n in (1..10): print(A036040_row(n))
    # Peter Luschny, Dec 18 2016, corrected Apr 30 2022

Formula

E.g.f.: A(t) = exp(Sum_{k>=1} x[k]*(t^k)/k!).
T(n,m) is the coefficient of ((t^n)/n!)* x[1]^e(m,1)*x[2]^e(m,2)*...*x[n]^e(m,n) in A(t). Here the m-th partition of n, counted in Abramowitz-Stegun(A-St) order, is [1^e(m,1), 2^e(m,2), ..., n^e(m,n)] with e(m,j) >= 0 and if e(m, j)=0 then j^0 is not recorded.
a(n, m) = n!/Product_{j=1..n} j!^e(m,j)*e(m,j)!, with [1^e(m,1), 2^e(m,2), ..., n^e(m, n)] the m-th partition of n in the mentioned A-St order.
With the notation in the Lang reference, x(1) treated as a variable and D the derivative w.r.t. x(1), a raising operator for the polynomial S(n,x(1)) = P3_n(x[1], ..., x[n]) is R = Sum_{n>=0} x(n+1) D^n / n! ; i.e., R S(n, x(1)) = S(n+1, x(1)). The lowering operator is D; i.e., D S(n, x(1)) = n S(n-1, x(1)). The sequence of polynomials is an Appell sequence, so [S(.,x(1)) + y]^n = S(n, x(1) + y). For x(j) = (-1)^(j-1)* (j-1)! for j > 1, S(n, x(1)) = [x(1) - 1]^n + n [x(1) - 1]^(n-1). - Tom Copeland, Aug 01 2008
Raising and lowering operators are given for the partition polynomials formed from A036040 in the link in "Lagrange a la Lah Part I" on page 22. - Tom Copeland, Sep 18 2011
The n-th row is generated by the determinant of [Sum_{k=0..n-1} (x_(k+1)*(dP_n)^k/k!) - S_n], where dP_n is the n X n submatrix of A132440 and S_n is the n X n submatrix of A129185. The coefficients are flagged by the partitions of n represented by the monomials in the indeterminates x_k. Letting all x_n = t, generates the Bell / Touchard / exponential polynomials of A008277. - Tom Copeland, May 03 2014
The partition polynomials of A036039 are obtained by substituting (n-1)! x[n] for x[n] in the partition polynomials of this entry. - Tom Copeland, Nov 17 2015
-(n-1)! F(n, B(1, x[1]), B(2, x[1], x[2])/2!, ..., B(n, x[1], ..., x[n])/n!) = x[n] extracts the indeterminates of the complete Bell partition polynomials B(n, x[1], ..., x[n]) of this entry, where F(n, x[1], ..., x[n]) are the Faber polynomials of A263916. (Compare with A263634.) - Tom Copeland, Nov 29 2015; Sep 09 2016
T(n, m) = A127671(n, m)/A264753(n, m), n >= 1 and 1 <= m <= A000041(n). - Johannes W. Meijer, Jul 12 2016
From Tom Copeland, Sep 07 2016: (Start)
From the connections among the elementary Schur polynomials and the partition polynomials of A130561, A036039 and this array, the partition polynomials of this array satisfy (d/d(x_m)) P(n, x_1, ..., x_n) = binomial(n,m) * P(n-m, x_1, ..., x_(n-m)) with P(k, x_1, ..., x_n) = 0 for k < 0.
Just as in the discussion and example in A130561, the umbral compositional inverse sequence is given by the sequence P(n, x_1, -x_2, -x_3, ..., -x_n).
(End)
The partition polynomials with an index shift can be generated by (v(x) + d/dx)^n v(x). Cf. Guha, p. 12. - Tom Copeland, Jul 19 2018

Extensions

More terms from David W. Wilson
Additional comments from Wouter Meeussen, Mar 23 2003
Showing 1-10 of 118 results. Next