cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A080577 Triangle in which n-th row lists all partitions of n, in graded reverse lexicographic ordering.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 5, 1, 1, 4, 3, 4, 2, 1, 4, 1, 1, 1, 3, 3, 1, 3, 2
Offset: 1

Views

Author

N. J. A. Sloane, Mar 23 2003

Keywords

Comments

This is the "Mathematica" ordering of the partitions, referenced in numerous other sequences. The partitions of each integer are in reverse order of the conjugates of the partitions in Abramowitz and Stegun order (A036036). They are in the reverse of the order of the partitions in Maple order (A080576). - Franklin T. Adams-Watters, Oct 18 2006
The graded reverse lexicographic ordering of the partitions is often referred to as the "Canonical" ordering of the partitions. - Daniel Forgues, Jan 21 2011
Also the "MAGMA" ordering of the partitions. - Jason Kimberley, Oct 28 2011
Also an intuitive ordering described but not formalized in [Hardy and Wright] the first four editions of which precede [Abramowitz and Stegun]. - L. Edson Jeffery, Aug 03 2013
Also the "Sage" ordering of the partitions. - Peter Luschny, Aug 12 2013
While this is the order used for the constructive function "IntegerPartitions", it is different from Mathematica's canonical ordering of finite expressions, the latter giving A036036 if parts of partitions are read in reversed (weakly increasing) order, or A334301 if in the usual (weakly decreasing) order. - Gus Wiseman, May 08 2020

Examples

			First five rows are:
  {{1}}
  {{2}, {1, 1}}
  {{3}, {2, 1}, {1, 1, 1}}
  {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}
  {{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}
Up to the fifth row, this is exactly the same as the colexicographic ordering A036037. The first row which differs is the sixth one, which reads ((6), (5,1), (4,2), (4,1,1), (3,3), (3,2,1), (3,1,1,1), (2,2,2), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1,1)). - _M. F. Hasler_, Jan 23 2020
From _Gus Wiseman_, May 08 2020: (Start)
The sequence of all partitions begins:
  ()         (3,2)        (2,1,1,1,1)    (2,2,1,1,1)
  (1)        (3,1,1)      (1,1,1,1,1,1)  (2,1,1,1,1,1)
  (2)        (2,2,1)      (7)            (1,1,1,1,1,1,1)
  (1,1)      (2,1,1,1)    (6,1)          (8)
  (3)        (1,1,1,1,1)  (5,2)          (7,1)
  (2,1)      (6)          (5,1,1)        (6,2)
  (1,1,1)    (5,1)        (4,3)          (6,1,1)
  (4)        (4,2)        (4,2,1)        (5,3)
  (3,1)      (4,1,1)      (4,1,1,1)      (5,2,1)
  (2,2)      (3,3)        (3,3,1)        (5,1,1,1)
  (2,1,1)    (3,2,1)      (3,2,2)        (4,4)
  (1,1,1,1)  (3,1,1,1)    (3,2,1,1)      (4,3,1)
  (5)        (2,2,2)      (3,1,1,1,1)    (4,2,2)
  (4,1)      (2,2,1,1)    (2,2,2,1)      (4,2,1,1)
The triangle with partitions shown as Heinz numbers (A129129) begins:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  28  25  30  40  27  36  48  64
  17  26  33  44  35  42  56  50  45  60  80  54  72  96 128
(End)
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, Fifth edition, 1979, p. 273.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 287.

Crossrefs

See A080576 Maple (graded reflected lexicographic) ordering.
See A036036 for the Hindenburg (graded reflected colexicographic) ordering (listed in the Abramowitz and Stegun Handbook).
See A036037 for graded colexicographic ordering.
See A228100 for the Fenner-Loizou (binary tree) ordering.
Differs from A036037 at a(48).
See A322761 for a compressed version.
Lexicographically ordered reversed partitions are A026791.
Reverse-colexicographically ordered partitions are A026792.
Compositions under this ordering are A066099.
Distinct parts of these partitions are counted by A115623.
Taking Heinz numbers gives A129129.
Lexicographically ordered partitions are A193073.
Colexicographically ordered partitions are A211992.
Reading partitions in reverse (weakly increasing) order gives A228531.
Lengths of these partitions are A238966.
Sorting partitions by Heinz number gives A296150.
The maxima of these partitions are A331581.
The length-sensitive version is A334439.

Programs

  • Magma
    &cat[&cat Partitions(n):n in[1..7]]; // Jason Kimberley, Oct 28 2011
    
  • Maple
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> x[], b(n$2))[]:
    seq(T(n), n=1..8);  # Alois P. Heinz, Jan 29 2020
  • Mathematica
    <Jean-François Alcover, Dec 10 2012 *)
    revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Join@@Table[Sort[IntegerPartitions[n],revlexsort],{n,0,8}] (* Gus Wiseman, May 08 2020 *)
  • PARI
    A080577_row(n)={vecsort(apply(t->Vecrev(t),partitions(n)),,4)} \\ M. F. Hasler, Jan 21 2020
  • Sage
    L = []
    for n in range(8): L += list(Partitions(n))
    flatten(L)   # Peter Luschny, Aug 12 2013
    

A129129 An irregular triangular array of natural numbers read by rows, with shape sequence A000041(n) related to sequence A060850.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 10, 9, 12, 16, 11, 14, 15, 20, 18, 24, 32, 13, 22, 21, 28, 25, 30, 40, 27, 36, 48, 64, 17, 26, 33, 44, 35, 42, 56, 50, 45, 60, 80, 54, 72, 96, 128, 19, 34, 39, 52, 55, 66, 88, 49, 70, 63, 84, 112, 75, 100, 90, 120, 160, 81, 108, 144, 192, 256
Offset: 0

Views

Author

Alford Arnold, Mar 31 2007

Keywords

Comments

The tree begins (at height n, n >= 0, nodes represent partitions of n)
0: 1
1: 2
2: 3 4
3: 5 6 8
4: 7 10 9 12 16
5: 11 14 15 20 18 24 32
...
and hence differs from A114622.
Ordering [graded reverse lexicographic order] of partitions (positive integer representation) of nonnegative integers, where part of size i [as summand] is mapped to i-th prime [as multiplicand], where the empty partition for 0 yields the empty product, i.e., 1. Permutation of positive integers, since bijection [1-1 and onto map] between the set of all partitions of nonnegative integers and positive integers. - Daniel Forgues, Aug 07 2018
These are all Heinz numbers of integer partitions in graded reverse-lexicographic order, where The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This is the so-called "Mathematica" order (sum/revlex) of partitions (A080577). Partitions in lexicographic order (sum/lex) are A193073, with Heinz numbers A334434. - Gus Wiseman, May 19 2020

Examples

			The array is a tree structure as described by A128628. If a node value has only one branch the value is twice that of its parent node. If it has two branches one is twice that of its parent node but the other is defined as indicated below:
(1) pick an odd number (e.g., 135)
(2) calculate its prime factorization (135 = 5*3*3*3)
(3) note the least prime factor (LPF(135) = 3)
(4) note the index of the LPF (index(3) = 2)
(5) subtract one from the index (2-1 = 1)
(6) calculate the prime associated with the value in step five (prime(1) = 2)
(7) The parent node of the odd number 135 is (2/3)*135 = 90 = A252461(135).
From _Daniel Forgues_, Aug 07 2018: (Start)
Partitions of 4 in graded reverse lexicographic order:
{4}: p_4 = 7;
{3,1}: p_3 * p_1 = 5 * 2 = 10;
{2,2}: p_2 * p_2 = 3^2 = 9;
{2,1,1}: p_2 * p_1 * p_1 = 3 * 2^2 = 12;
{1,1,1,1}: p_1 * p_1 * p_1 * p_1 = 2^4 = 16. (End)
From _Gus Wiseman_, May 19 2020: (Start)
The sequence together with the corresponding partitions begins:
    1: ()            24: (2,1,1,1)         35: (4,3)
    2: (1)           32: (1,1,1,1,1)       42: (4,2,1)
    3: (2)           13: (6)               56: (4,1,1,1)
    4: (1,1)         22: (5,1)             50: (3,3,1)
    5: (3)           21: (4,2)             45: (3,2,2)
    6: (2,1)         28: (4,1,1)           60: (3,2,1,1)
    8: (1,1,1)       25: (3,3)             80: (3,1,1,1,1)
    7: (4)           30: (3,2,1)           54: (2,2,2,1)
   10: (3,1)         40: (3,1,1,1)         72: (2,2,1,1,1)
    9: (2,2)         27: (2,2,2)           96: (2,1,1,1,1,1)
   12: (2,1,1)       36: (2,2,1,1)        128: (1,1,1,1,1,1,1)
   16: (1,1,1,1)     48: (2,1,1,1,1)       19: (8)
   11: (5)           64: (1,1,1,1,1,1)     34: (7,1)
   14: (4,1)         17: (7)               39: (6,2)
   15: (3,2)         26: (6,1)             52: (6,1,1)
   20: (3,1,1)       33: (5,2)             55: (5,3)
   18: (2,2,1)       44: (5,1,1)           66: (5,2,1)
(End)
		

Crossrefs

Cf. A080577 (the partitions), A252461, A114622, A128628, A215366 (sorted rows).
Row lengths are A000041.
Compositions under the same order are A066099.
The opposite version (sum/lex) is A334434.
The length-sensitive version (sum/length/revlex) is A334438.
The version for reversed (weakly increasing) partitions is A334436.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
Sum of prime indices is A056239.
Sorting reversed partitions by Heinz number gives A112798.
Partitions in lexicographic order are A193073.
Sorting partitions by Heinz number gives A296150.

Programs

  • Maple
    b:= (n, i)-> `if`(n=0 or i=1, [2^n], [map(x-> x*ithprime(i),
                    b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> b(n$2)[]:
    seq(T(n), n=0..10);  # Alois P. Heinz, Feb 14 2020
  • Mathematica
    Array[Times @@ # & /@ Prime@ IntegerPartitions@ # &, 9, 0] // Flatten (* Michael De Vlieger, Aug 07 2018 *)
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {2^n}, Join[(# Prime[i]&) /@ b[n - i, Min[n - i, i]], b[n, i - 1]]];
    T[n_] := b[n, n];
    T /@ Range[0, 10] // Flatten (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)

Formula

From Gus Wiseman, May 19 2020: (Start)
A001222(a(n)) = A238966(n).
A001221(a(n)) = A115623(n).
A056239(a(n)) = A036042(n).
A061395(a(n)) = A331581(n).
(End)

A331581 Maximum part of the n-th integer partition in graded reverse-lexicographic order (A080577); a(1) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 1, 4, 3, 2, 2, 1, 5, 4, 3, 3, 2, 2, 1, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 1, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 9, 8, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 08 2020

Keywords

Comments

The first partition ranked by A080577 is (); there is no zeroth partition.

Examples

			The sequence of all partitions in graded reverse-lexicographic order begins as follows. The terms are the initial parts.
  ()         (3,2)        (2,1,1,1,1)    (2,2,1,1,1)
  (1)        (3,1,1)      (1,1,1,1,1,1)  (2,1,1,1,1,1)
  (2)        (2,2,1)      (7)            (1,1,1,1,1,1,1)
  (1,1)      (2,1,1,1)    (6,1)          (8)
  (3)        (1,1,1,1,1)  (5,2)          (7,1)
  (2,1)      (6)          (5,1,1)        (6,2)
  (1,1,1)    (5,1)        (4,3)          (6,1,1)
  (4)        (4,2)        (4,2,1)        (5,3)
  (3,1)      (4,1,1)      (4,1,1,1)      (5,2,1)
  (2,2)      (3,3)        (3,3,1)        (5,1,1,1)
  (2,1,1)    (3,2,1)      (3,2,2)        (4,4)
  (1,1,1,1)  (3,1,1,1)    (3,2,1,1)      (4,3,1)
  (5)        (2,2,2)      (3,1,1,1,1)    (4,2,2)
  (4,1)      (2,2,1,1)    (2,2,2,1)      (4,2,1,1)
Triangle begins:
  0
  1
  2 1
  3 2 1
  4 3 2 2 1
  5 4 3 3 2 2 1
  6 5 4 4 3 3 3 2 2 2 1
  7 6 5 5 4 4 4 3 3 3 3 2 2 2 1
  8 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3 2 2 2 2 1
		

Crossrefs

Row lengths are A000041.
Lexicographically ordered reversed partitions are A026791.
Reverse-colexicographically ordered partitions are A026792.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
The version for compositions is A065120 or A333766.
Reverse-lexicographically ordered partitions are A080577.
Distinct parts of these partitions are counted by A115623.
Lexicographically ordered partitions are A193073.
Colexicographically ordered partitions are A211992.
Lengths of these partitions are A238966.

Programs

  • Mathematica
    revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Prepend[First/@Join@@Table[Sort[IntegerPartitions[n],revlexsort],{n,8}],0]

Formula

a(n) = A061395(A129129(n - 1)).

A344086 Flattened tetrangle of strict integer partitions sorted first by sum, then lexicographically.

Original entry on oeis.org

1, 2, 2, 1, 3, 3, 1, 4, 3, 2, 4, 1, 5, 3, 2, 1, 4, 2, 5, 1, 6, 4, 2, 1, 4, 3, 5, 2, 6, 1, 7, 4, 3, 1, 5, 2, 1, 5, 3, 6, 2, 7, 1, 8, 4, 3, 2, 5, 3, 1, 5, 4, 6, 2, 1, 6, 3, 7, 2, 8, 1, 9, 4, 3, 2, 1, 5, 3, 2, 5, 4, 1, 6, 3, 1, 6, 4, 7, 2, 1, 7, 3, 8, 2, 9, 1, 10
Offset: 0

Views

Author

Gus Wiseman, May 11 2021

Keywords

Comments

The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (21)(3)
  4: (31)(4)
  5: (32)(41)(5)
  6: (321)(42)(51)(6)
  7: (421)(43)(52)(61)(7)
  8: (431)(521)(53)(62)(71)(8)
  9: (432)(531)(54)(621)(63)(72)(81)(9)
		

Crossrefs

Positions of first appearances are A015724.
Triangle sums are A066189.
Taking revlex instead of lex gives A118457.
The not necessarily strict version is A193073.
The version for reversed partitions is A246688.
The Heinz numbers of these partitions grouped by sum are A246867.
The ordered generalization is A339351.
Taking colex instead of lex gives A344087.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts reversed strict partitions by Heinz number.
A329631 sorts strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],lexsort],{n,0,8}]

A333486 Length of the n-th reversed integer partition in graded reverse-lexicographic order. Partition lengths of A228531.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 1, 2, 2, 3, 4, 1, 2, 2, 3, 3, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 4, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 5, 6, 7, 1, 2, 2, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 6, 7, 8, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 7, 8, 9
Offset: 0

Views

Author

Gus Wiseman, May 23 2020

Keywords

Examples

			Triangle begins:
  0
  1
  1 2
  1 2 3
  1 2 2 3 4
  1 2 2 3 3 4 5
  1 2 2 3 2 3 3 4 4 5 6
  1 2 2 3 2 3 3 4 3 4 4 5 5 6 7
  1 2 2 2 3 3 4 2 3 3 4 3 4 4 5 4 5 5 6 6 7 8
		

Crossrefs

Row lengths are A000041.
The generalization to compositions is A000120.
Row sums are A006128.
The same partition has sum A036042.
The length-sensitive version (sum/length/revlex) is A036043.
The colexicographic version (sum/colex) is A049085.
The same partition has minimum A182715.
The lexicographic version (sum/lex) is A193173.
The tetrangle of these partitions is A228531.
The version for non-reversed partitions is A238966.
The same partition has Heinz number A334436.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
Partitions in lexicographic order (sum/lex) are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Partitions in opposite Abramowitz-Stegun order (sum/length/revlex) are A334439.

Programs

  • Mathematica
    revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Table[Length/@Sort[Reverse/@IntegerPartitions[n],revlexsort],{n,0,8}]

A194546 Triangle read by rows: T(n,k) is the largest part of the k-th partition of n, with partitions in colexicographic order.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 3, 2, 4, 1, 2, 3, 2, 4, 3, 5, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 3, 5, 4, 7, 3, 6, 5, 9
Offset: 1

Views

Author

Omar E. Pol, Dec 10 2011

Keywords

Comments

Row n lists the first A000041(n) terms of A141285.
The representation of the partitions (for fixed n) is as (weakly) decreasing lists of parts, the order between individual partitions (for the same n) is co-lexicographic, see example. - Joerg Arndt, Sep 13 2013

Examples

			For n = 5 the partitions of 5 in colexicographic order are:
  1+1+1+1+1
  2+1+1+1
  3+1+1
  2+2+1
  4+1
  3+2
  5
so the fifth row is the largest in each partition: 1,2,3,2,4,3,5
Triangle begins:
  1;
  1,2;
  1,2,3;
  1,2,3,2,4;
  1,2,3,2,4,3,5;
  1,2,3,2,4,3,5,2,4,3,6;
  1,2,3,2,4,3,5,2,4,3,6,3,5,4,7;
  1,2,3,2,4,3,5,2,4,3,6,3,5,4,7,2,4,3,6,5,4,8;
...
		

Crossrefs

The sum of row n is A006128(n).
Row lengths are A000041.
Let y be the n-th integer partition in colexicographic order (A211992):
- The maximum of y is a(n).
- The length of y is A193173(n).
- The minimum of y is A196931(n).
- The Heinz number of y is A334437(n).
Lexicographically ordered reversed partitions are A026791.
Reverse-colexicographically ordered partitions are A026792.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
Reverse-lexicographically ordered partitions are A080577.
Lexicographically ordered partitions are A193073.

Programs

  • Mathematica
    colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]];
    Max/@Join@@Table[Sort[IntegerPartitions[n],colex],{n,8}] (* Gus Wiseman, May 31 2020 *)

Formula

a(n) = A061395(A334437(n)). - Gus Wiseman, May 31 2020

Extensions

Definition corrected by Omar E. Pol, Sep 12 2013

A344089 Flattened tetrangle of reversed strict integer partitions, sorted first by length and then colexicographically.

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 1, 3, 5, 2, 3, 1, 4, 6, 2, 4, 1, 5, 1, 2, 3, 7, 3, 4, 2, 5, 1, 6, 1, 2, 4, 8, 3, 5, 2, 6, 1, 7, 1, 3, 4, 1, 2, 5, 9, 4, 5, 3, 6, 2, 7, 1, 8, 2, 3, 4, 1, 3, 5, 1, 2, 6, 10, 4, 6, 3, 7, 2, 8, 1, 9, 2, 3, 5, 1, 4, 5, 1, 3, 6, 1, 2, 7, 1, 2, 3, 4
Offset: 0

Views

Author

Gus Wiseman, May 12 2021

Keywords

Comments

First differs from the revlex (instead of colex) version for partitions of 12.
The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (3)(12)
  4: (4)(13)
  5: (5)(23)(14)
  6: (6)(24)(15)(123)
  7: (7)(34)(25)(16)(124)
  8: (8)(35)(26)(17)(134)(125)
  9: (9)(45)(36)(27)(18)(234)(135)(126)
		

Crossrefs

Positions of first appearances are A015724 plus one.
Taking lex instead of colex gives A026793 (non-reversed: A118457).
Triangle sums are A066189.
Reversing all partitions gives A344090.
The non-strict version is A344091.
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.

Programs

  • Mathematica
    Table[Reverse/@Sort[Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,30}]

A335122 Irregular triangle whose reversed rows are all integer partitions in graded reverse-lexicographic order.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 5, 1, 4, 2, 3, 1, 1, 3, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 5, 2, 4, 1, 1, 4, 3, 3, 1, 2, 3, 1, 1, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 7, 1, 6, 2, 5, 1, 1, 5, 3, 4, 1, 2, 4
Offset: 0

Views

Author

Gus Wiseman, May 24 2020

Keywords

Comments

First differs from A036036 for partitions of 6.
First differs from A334442 for partitions of 6.
Also reversed partitions in reverse-colexicographic order.

Examples

			The sequence of all reversed partitions begins:
  ()         (1,1,3)        (7)              (8)
  (1)        (1,2,2)        (1,6)            (1,7)
  (2)        (1,1,1,2)      (2,5)            (2,6)
  (1,1)      (1,1,1,1,1)    (1,1,5)          (1,1,6)
  (3)        (6)            (3,4)            (3,5)
  (1,2)      (1,5)          (1,2,4)          (1,2,5)
  (1,1,1)    (2,4)          (1,1,1,4)        (1,1,1,5)
  (4)        (1,1,4)        (1,3,3)          (4,4)
  (1,3)      (3,3)          (2,2,3)          (1,3,4)
  (2,2)      (1,2,3)        (1,1,2,3)        (2,2,4)
  (1,1,2)    (1,1,1,3)      (1,1,1,1,3)      (1,1,2,4)
  (1,1,1,1)  (2,2,2)        (1,2,2,2)        (1,1,1,1,4)
  (5)        (1,1,2,2)      (1,1,1,2,2)      (2,3,3)
  (1,4)      (1,1,1,1,2)    (1,1,1,1,1,2)    (1,1,3,3)
  (2,3)      (1,1,1,1,1,1)  (1,1,1,1,1,1,1)  (1,2,2,3)
We have the following tetrangle of reversed partitions:
                             0
                            (1)
                          (2)(11)
                        (3)(12)(111)
                   (4)(13)(22)(112)(1111)
             (5)(14)(23)(113)(122)(1112)(11111)
  (6)(15)(24)(114)(33)(123)(1113)(222)(1122)(11112)(111111)
		

Crossrefs

Row lengths are A000041.
The version for reversed partitions is A026792.
The version for colex instead of revlex is A026791.
The version for lex instead of revlex is A080576.
The non-reflected version is A080577.
The number of distinct parts is A115623.
Taking Heinz numbers gives A129129.
The version for compositions is A228351.
Partition lengths are A238966.
Partition maxima are A331581.
The length-sensitive version is A334442.
Lexicographically ordered partitions are A193073.
Partitions in colexicographic order are A211992.

Programs

  • Mathematica
    revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Reverse/@Join@@Table[Sort[IntegerPartitions[n],revlexsort],{n,0,8}]

A344085 Triangle of squarefree numbers first grouped by greatest prime factor, then sorted by omega, then in increasing order, read by rows.

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 77, 66, 110, 154, 165, 231, 385, 330, 462, 770, 1155, 2310, 13, 26, 39, 65, 91, 143, 78, 130, 182, 195, 273, 286, 429, 455, 715, 1001, 390, 546, 858, 910, 1365, 1430, 2002, 2145, 3003, 5005, 2730, 4290, 6006, 10010, 15015, 30030
Offset: 1

Views

Author

Gus Wiseman, May 11 2021

Keywords

Comments

Differs from A339195 in having 77 before 66.

Examples

			Triangle begins:
   1
   2
   3   6
   5  10  15  30
   7  14  21  35  42  70 105 210
		

Crossrefs

Programs

  • Mathematica
    nn=4;
    GatherBy[SortBy[Select[Range[Times@@Prime/@Range[nn]],SquareFreeQ[#]&&PrimePi[FactorInteger[#][[-1,1]]]<=nn&],PrimeOmega],FactorInteger[#][[-1,1]]&]

A344087 Flattened tetrangle of strict integer partitions sorted first by sum, then colexicographically.

Original entry on oeis.org

1, 2, 2, 1, 3, 3, 1, 4, 4, 1, 3, 2, 5, 3, 2, 1, 5, 1, 4, 2, 6, 4, 2, 1, 6, 1, 5, 2, 4, 3, 7, 5, 2, 1, 4, 3, 1, 7, 1, 6, 2, 5, 3, 8, 6, 2, 1, 5, 3, 1, 8, 1, 4, 3, 2, 7, 2, 6, 3, 5, 4, 9, 4, 3, 2, 1, 7, 2, 1, 6, 3, 1, 5, 4, 1, 9, 1, 5, 3, 2, 8, 2, 7, 3, 6, 4, 10
Offset: 0

Views

Author

Gus Wiseman, May 11 2021

Keywords

Comments

The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (21)(3)
  4: (31)(4)
  5: (41)(32)(5)
  6: (321)(51)(42)(6)
  7: (421)(61)(52)(43)(7)
  8: (521)(431)(71)(62)(53)(8)
  9: (621)(531)(81)(432)(72)(63)(54)(9)
		

Crossrefs

Positions of first appearances are A015724.
Triangle sums are A066189.
Taking revlex instead of colex gives A118457.
The not necessarily strict version is A211992.
Taking lex instead of colex gives A344086.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).

Programs

  • Mathematica
    colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]];
    Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],colex],{n,0,10}]
Showing 1-10 of 12 results. Next