A334442
Irregular triangle whose reversed rows are all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.
Original entry on oeis.org
1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 5, 1, 4, 2, 3, 1, 1, 3, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 5, 2, 4, 3, 3, 1, 1, 4, 1, 2, 3, 2, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 7, 1, 6, 2, 5, 3, 4, 1, 1, 5
Offset: 0
The sequence of all partitions begins:
() (2,3) (1,1,1,1,2) (1,1,1,2,2)
(1) (1,1,3) (1,1,1,1,1,1) (1,1,1,1,1,2)
(2) (1,2,2) (7) (1,1,1,1,1,1,1)
(1,1) (1,1,1,2) (1,6) (8)
(3) (1,1,1,1,1) (2,5) (1,7)
(1,2) (6) (3,4) (2,6)
(1,1,1) (1,5) (1,1,5) (3,5)
(4) (2,4) (1,2,4) (4,4)
(1,3) (3,3) (1,3,3) (1,1,6)
(2,2) (1,1,4) (2,2,3) (1,2,5)
(1,1,2) (1,2,3) (1,1,1,4) (1,3,4)
(1,1,1,1) (2,2,2) (1,1,2,3) (2,2,4)
(5) (1,1,1,3) (1,2,2,2) (2,3,3)
(1,4) (1,1,2,2) (1,1,1,1,3) (1,1,1,5)
This sequence can also be interpreted as the following triangle:
0
(1)
(2)(11)
(3)(12)(111)
(4)(13)(22)(112)(1111)
(5)(14)(23)(113)(122)(1112)(11111)
Taking Heinz numbers (A334438) gives:
1
2
3 4
5 6 8
7 10 9 12 16
11 14 15 20 18 24 32
13 22 21 25 28 30 27 40 36 48 64
17 26 33 35 44 42 50 45 56 60 54 80 72 96 128
The version for reversed partitions is
A334301.
The version for colex instead of revlex is
A334302.
Taking Heinz numbers gives
A334438.
The version with rows reversed is
A334439.
Lexicographically ordered reversed partitions are
A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are
A036036.
Partitions in increasing-length colex order (sum/length/colex) are
A036037.
Reverse-lexicographically ordered partitions are
A080577.
Lexicographically ordered partitions are
A193073.
Partitions in colexicographic order (sum/colex) are
A211992.
Sorting partitions by Heinz number gives
A296150.
Cf.
A026791,
A112798,
A124734,
A129129,
A185974,
A228100,
A228531,
A296774,
A334433,
A334435,
A334436.
-
revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]
-
A334442_row(n)=vecsort(partitions(n),p->concat(#p,-Vecrev(p))) \\ Rows of triangle defined in EXAMPLE (all partitions of n). Wrap into [Vec(p)|p<-...] to avoid "Vecsmall". - M. F. Hasler, May 14 2020
A344086
Flattened tetrangle of strict integer partitions sorted first by sum, then lexicographically.
Original entry on oeis.org
1, 2, 2, 1, 3, 3, 1, 4, 3, 2, 4, 1, 5, 3, 2, 1, 4, 2, 5, 1, 6, 4, 2, 1, 4, 3, 5, 2, 6, 1, 7, 4, 3, 1, 5, 2, 1, 5, 3, 6, 2, 7, 1, 8, 4, 3, 2, 5, 3, 1, 5, 4, 6, 2, 1, 6, 3, 7, 2, 8, 1, 9, 4, 3, 2, 1, 5, 3, 2, 5, 4, 1, 6, 3, 1, 6, 4, 7, 2, 1, 7, 3, 8, 2, 9, 1, 10
Offset: 0
Tetrangle begins:
0: ()
1: (1)
2: (2)
3: (21)(3)
4: (31)(4)
5: (32)(41)(5)
6: (321)(42)(51)(6)
7: (421)(43)(52)(61)(7)
8: (431)(521)(53)(62)(71)(8)
9: (432)(531)(54)(621)(63)(72)(81)(9)
Positions of first appearances are
A015724.
Taking revlex instead of lex gives
A118457.
The not necessarily strict version is
A193073.
The version for reversed partitions is
A246688.
The Heinz numbers of these partitions grouped by sum are
A246867.
The ordered generalization is
A339351.
Taking colex instead of lex gives
A344087.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts reversed strict partitions by Heinz number.
A329631 sorts strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).
Partition/composition orderings:
A026791,
A026792,
A036036,
A036037,
A048793,
A066099,
A080577,
A112798,
A124734,
A162247,
A211992,
A228100,
A228351,
A228531,
A272020,
A299755,
A296774,
A304038,
A334301,
A334302,
A334439,
A334442,
A335122,
A344085,
A344086,
A344088,
A344089.
Partition/composition applications:
A001793,
A005183,
A036043,
A049085,
A070939,
A115623,
A124736,
A129129,
A185974,
A238966,
A294648,
A333483,
A333484,
A333485,
A333486,
A334433,
A334434,
A334435,
A334436,
A334437,
A334438,
A334440,
A334441,
A335123,
A335124,
A339195.
-
lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],lexsort],{n,0,8}]
A344089
Flattened tetrangle of reversed strict integer partitions, sorted first by length and then colexicographically.
Original entry on oeis.org
1, 2, 3, 1, 2, 4, 1, 3, 5, 2, 3, 1, 4, 6, 2, 4, 1, 5, 1, 2, 3, 7, 3, 4, 2, 5, 1, 6, 1, 2, 4, 8, 3, 5, 2, 6, 1, 7, 1, 3, 4, 1, 2, 5, 9, 4, 5, 3, 6, 2, 7, 1, 8, 2, 3, 4, 1, 3, 5, 1, 2, 6, 10, 4, 6, 3, 7, 2, 8, 1, 9, 2, 3, 5, 1, 4, 5, 1, 3, 6, 1, 2, 7, 1, 2, 3, 4
Offset: 0
Tetrangle begins:
0: ()
1: (1)
2: (2)
3: (3)(12)
4: (4)(13)
5: (5)(23)(14)
6: (6)(24)(15)(123)
7: (7)(34)(25)(16)(124)
8: (8)(35)(26)(17)(134)(125)
9: (9)(45)(36)(27)(18)(234)(135)(126)
Positions of first appearances are
A015724 plus one.
Reversing all partitions gives
A344090.
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.
Partition/composition orderings:
A026791,
A026792,
A036036,
A036037,
A048793,
A066099,
A080577,
A112798,
A124734,
A162247,
A193073,
A211992,
A228100,
A228351,
A228531,
A246688,
A272020,
A299755,
A296774,
A304038,
A334301,
A334302,
A334439,
A334442,
A335122,
A339351,
A344085,
A344086,
A344087,
A344088,
A344089.
Partition/composition applications:
A001793,
A005183,
A036043,
A049085,
A070939,
A115623,
A124736,
A129129,
A185974,
A238966,
A246867,
A294648,
A333483,
A333484,
A333485,
A333486,
A334433,
A334434,
A334435,
A334436,
A334437,
A334438,
A334440,
A334441,
A335123,
A335124,
A339195.
-
Table[Reverse/@Sort[Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,30}]
A344085
Triangle of squarefree numbers first grouped by greatest prime factor, then sorted by omega, then in increasing order, read by rows.
Original entry on oeis.org
1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 77, 66, 110, 154, 165, 231, 385, 330, 462, 770, 1155, 2310, 13, 26, 39, 65, 91, 143, 78, 130, 182, 195, 273, 286, 429, 455, 715, 1001, 390, 546, 858, 910, 1365, 1430, 2002, 2145, 3003, 5005, 2730, 4290, 6006, 10010, 15015, 30030
Offset: 1
Triangle begins:
1
2
3 6
5 10 15 30
7 14 21 35 42 70 105 210
Grouping by greatest prime factor only gives
A339195.
Partition/composition orderings:
A026791,
A026792,
A026793,
A036036,
A036037,
A048793,
A066099,
A080577,
A112798,
A118457,
A124734,
A162247,
A193073,
A211992,
A228100,
A228531,
A246688,
A272020,
A299755,
A296774,
A304038,
A319247,
A329631,
A334301,
A334302,
A334439,
A334442,
A335122,
A344086,
A344087,
A344088,
A344089.
Partition/composition applications:
A001793,
A036043,
A049085,
A070939,
A115623,
A124736,
A129129,
A185974,
A238966,
A294648,
A333483,
A333484,
A333485,
A333486,
A334433,
A334434,
A334435,
A334436,
A334437,
A334438,
A334440,
A334441,
A335123,
A335124.
-
nn=4;
GatherBy[SortBy[Select[Range[Times@@Prime/@Range[nn]],SquareFreeQ[#]&&PrimePi[FactorInteger[#][[-1,1]]]<=nn&],PrimeOmega],FactorInteger[#][[-1,1]]&]
A344087
Flattened tetrangle of strict integer partitions sorted first by sum, then colexicographically.
Original entry on oeis.org
1, 2, 2, 1, 3, 3, 1, 4, 4, 1, 3, 2, 5, 3, 2, 1, 5, 1, 4, 2, 6, 4, 2, 1, 6, 1, 5, 2, 4, 3, 7, 5, 2, 1, 4, 3, 1, 7, 1, 6, 2, 5, 3, 8, 6, 2, 1, 5, 3, 1, 8, 1, 4, 3, 2, 7, 2, 6, 3, 5, 4, 9, 4, 3, 2, 1, 7, 2, 1, 6, 3, 1, 5, 4, 1, 9, 1, 5, 3, 2, 8, 2, 7, 3, 6, 4, 10
Offset: 0
Tetrangle begins:
0: ()
1: (1)
2: (2)
3: (21)(3)
4: (31)(4)
5: (41)(32)(5)
6: (321)(51)(42)(6)
7: (421)(61)(52)(43)(7)
8: (521)(431)(71)(62)(53)(8)
9: (621)(531)(81)(432)(72)(63)(54)(9)
Positions of first appearances are
A015724.
Taking revlex instead of colex gives
A118457.
The not necessarily strict version is
A211992.
Taking lex instead of colex gives
A344086.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).
Partition/composition orderings:
A026791,
A026792,
A036036,
A036037,
A048793,
A066099,
A080576,
A080577,
A112798,
A124734,
A162247,
A193073,
A211992,
A228100,
A228351,
A228531,
A246688,
A272020,
A299755,
A296774,
A304038,
A319247,
A334301,
A334302,
A334439,
A334442,
A335122,
A339351,
A344085,
A344086,
A344088,
A344089,
A344091.
Partition/composition applications:
A001793,
A005183,
A036043,
A049085,
A070939,
A115623,
A124736,
A129129,
A185974,
A238966,
A246867,
A294648,
A333483,
A333484,
A333485,
A333486,
A334433,
A334434,
A334435,
A334436,
A334437,
A334438,
A334440,
A334441,
A335123,
A335124,
A339195.
-
colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]];
Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],colex],{n,0,10}]
A344088
Flattened tetrangle of reversed strict integer partitions sorted first by sum, then colexicographically.
Original entry on oeis.org
1, 2, 1, 2, 3, 1, 3, 4, 2, 3, 1, 4, 5, 1, 2, 3, 2, 4, 1, 5, 6, 1, 2, 4, 3, 4, 2, 5, 1, 6, 7, 1, 3, 4, 1, 2, 5, 3, 5, 2, 6, 1, 7, 8, 2, 3, 4, 1, 3, 5, 4, 5, 1, 2, 6, 3, 6, 2, 7, 1, 8, 9, 1, 2, 3, 4, 2, 3, 5, 1, 4, 5, 1, 3, 6, 4, 6, 1, 2, 7, 3, 7, 2, 8, 1, 9, 10
Offset: 0
Tetrangle begins:
0: ()
1: (1)
2: (2)
3: (12)(3)
4: (13)(4)
5: (23)(14)(5)
6: (123)(24)(15)(6)
7: (124)(34)(25)(16)(7)
8: (134)(125)(35)(26)(17)(8)
9: (234)(135)(45)(126)(36)(27)(18)(9)
Positions of first appearances are
A015724.
The non-reversed version is
A344087.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).
Partition/composition orderings:
A026791,
A026792,
A036036,
A036037,
A048793,
A066099,
A080577,
A112798,
A124734,
A162247,
A193073,
A211992,
A228100,
A228351,
A228531,
A272020,
A299755,
A296774,
A304038,
A334301,
A334302,
A334439,
A334442,
A335122,
A339351,
A344085,
A344086,
A344091.
Partition/composition applications:
A001793,
A005183,
A036043,
A049085,
A070939,
A115623,
A124736,
A129129,
A185974,
A238966,
A246867,
A294648,
A333483,
A333484,
A333485,
A333486,
A334433,
A334434,
A334435,
A334436,
A334437,
A334438,
A334440,
A334441,
A335123,
A335124,
A339195.
-
colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]];
Table[Sort[Reverse/@Select[IntegerPartitions[n],UnsameQ@@#&],colex],{n,0,10}]
A344084
Concatenated list of all finite nonempty sets of positive integers sorted first by maximum, then by length, and finally lexicographically.
Original entry on oeis.org
1, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 3, 4, 1, 4, 2, 4, 3, 4, 1, 2, 4, 1, 3, 4, 2, 3, 4, 1, 2, 3, 4, 5, 1, 5, 2, 5, 3, 5, 4, 5, 1, 2, 5, 1, 3, 5, 1, 4, 5, 2, 3, 5, 2, 4, 5, 3, 4, 5, 1, 2, 3, 5, 1, 2, 4, 5, 1, 3, 4, 5, 2, 3, 4, 5, 1, 2, 3, 4, 5
Offset: 1
The sets are the columns below:
1 2 1 3 1 2 1 4 1 2 3 1 1 2 1 5 1 2 3 4 1 1 1 2 2 3 1
2 3 3 2 4 4 4 2 3 3 2 5 5 5 5 2 3 4 3 4 4 2
3 4 4 4 3 5 5 5 5 5 5 3
4 5
As a tetrangle, the first four triangles are:
{1}
{2},{1,2}
{3},{1,3},{2,3},{1,2,3}
{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}
Positions of first appearances are
A005183.
Partition/composition orderings:
A026791,
A026792,
A026793,
A036036,
A036037,
A048793,
A066099,
A080577,
A112798,
A118457,
A124734,
A162247,
A193073,
A211992,
A228100,
A228531,
A246688,
A272020,
A296774,
A299755,
A304038,
A319247,
A329631,
A334301,
A334302,
A334439,
A334442,
A335122,
A344085,
A344086,
A344087,
A344088,
A344089.
Partition/composition applications:
A036043,
A049085,
A115623,
A129129,
A185974,
A238966,
A294648,
A333483,
A333484,
A333485,
A333486,
A334433,
A334434,
A334435,
A334436,
A334437,
A334438,
A334440,
A334441,
A335123,
A335124,
A339195.
Showing 1-7 of 7 results.
Comments