A193228 Truncated octahedron with faces of centered polygons.
1, 39, 185, 511, 1089, 1991, 3289, 5055, 7361, 10279, 13881, 18239, 23425, 29511, 36569, 44671, 53889, 64295, 75961, 88959, 103361, 119239, 136665, 155711, 176449, 198951, 223289, 249535, 277761, 308039, 340441, 375039, 411905, 451111, 492729, 536831, 583489
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- OEIS, (Centered_polygons) pyramidal numbers
- Wikipedia, Tetrahedral number
- Wikipedia, Triangular number
- Wikipedia, Centered polygonal number
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Excel
(copy and paste the following formula =12*ROW()^3-18*ROW()^2+8*ROW()-1 fill down to desired size.)
-
Magma
[12*n^3-18*n^2+8*n-1: n in [1..50]]; // Vincenzo Librandi, Aug 30 2011
-
Mathematica
Table[12n^3-18n^2+8n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,39,185,511},40] (* Harvey P. Dale, Aug 27 2011 *)
-
PARI
vector(40, n, 12*n^3 - 18*n^2 + 8*n - 1) \\ G. C. Greubel, Nov 10 2018
Formula
a(n) = 12*n^3 - 18*n^2 + 8*n - 1.
G.f.: x*(1+x)*(x^2 + 34*x + 1) / (x-1)^4. - R. J. Mathar, Aug 26 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=39, a(2)=185, a(3)=511. - Harvey P. Dale, Aug 27 2011
E.g.f.: 1 - (1 - 2*x - 18*x^2 - 12*x^3)*exp(x). - G. C. Greubel, Nov 10 2018
Comments