cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193228 Truncated octahedron with faces of centered polygons.

Original entry on oeis.org

1, 39, 185, 511, 1089, 1991, 3289, 5055, 7361, 10279, 13881, 18239, 23425, 29511, 36569, 44671, 53889, 64295, 75961, 88959, 103361, 119239, 136665, 155711, 176449, 198951, 223289, 249535, 277761, 308039, 340441, 375039, 411905, 451111, 492729, 536831, 583489
Offset: 1

Views

Author

Craig Ferguson, Jul 18 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a truncated octahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered squares (A001844) and centered hexagons (A003215)]

Programs

  • Excel
    (copy and paste the following formula =12*ROW()^3-18*ROW()^2+8*ROW()-1 fill down to desired size.)
    
  • Magma
    [12*n^3-18*n^2+8*n-1: n in [1..50]]; // Vincenzo Librandi, Aug 30 2011
    
  • Mathematica
    Table[12n^3-18n^2+8n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,39,185,511},40] (* Harvey P. Dale, Aug 27 2011 *)
  • PARI
    vector(40, n, 12*n^3 - 18*n^2 + 8*n - 1) \\ G. C. Greubel, Nov 10 2018

Formula

a(n) = 12*n^3 - 18*n^2 + 8*n - 1.
G.f.: x*(1+x)*(x^2 + 34*x + 1) / (x-1)^4. - R. J. Mathar, Aug 26 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=39, a(2)=185, a(3)=511. - Harvey P. Dale, Aug 27 2011
E.g.f.: 1 - (1 - 2*x - 18*x^2 - 12*x^3)*exp(x). - G. C. Greubel, Nov 10 2018