A193233 Triangle T(n,k), n>=1, 0<=k<=3^n, read by rows: row n gives the coefficients of the chromatic polynomial of the Hanoi graph H_n, highest powers first.
1, -3, 2, 0, 1, -12, 63, -190, 363, -455, 370, -180, 40, 0, 1, -39, 732, -8806, 76293, -507084, 2689452, -11689056, 42424338, -130362394, 342624075, -776022242, 1522861581, -2598606825, 3863562996, -5007519752, 5652058863, -5541107684, 4697231261
Offset: 1
Examples
2 example graphs: o . / \ . o---o . / \ . o o o . / \ / \ / \ . o---o o---o---o---o Graph: H_1 H_2 Vertices: 3 9 Edges: 3 12 The Hanoi graph H_1 equals the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0]. Triangle T(n,k) begins: 1, -3, 2, 0; 1, -12, 63, -190, 363, -455, ... 1, -39, 732, -8806, 76293, -507084, ... 1, -120, 7113, -277654, 8028540, -183411999, ... 1, -363, 65622, -7877020, 706303350, -50461570575, ... 1, -1092, 595443, -216167710, 58779577593, -12769539913071, ... ...
Links
- Alois P. Heinz, Rows n = 1..6, flattened
- Eric Weisstein's World of Mathematics, Chromatic Polynomial
- Eric Weisstein's World of Mathematics, Hanoi Graph
- Wikipedia, Chromatic Polynomial
- Wikipedia, Tower of Hanoi
Crossrefs
Cf. A288839 (chromatic polynomials of the n-Hanoi graph).
Cf. A137889 (directed Hamiltonian paths in the n-Hanoi graph).
Cf. A288490 (independent vertex sets in the n-Hanoi graph).
Cf. A286017 (matchings in the n-Hanoi graph).
Cf. A193136 (spanning trees of the n-Hanoi graph).
Cf. A288796 (undirected paths in the n-Hanoi graph).
Comments