cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A182368 Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the square grid graph G_(n,n), highest powers first.

Original entry on oeis.org

1, 0, 1, -4, 6, -3, 0, 1, -12, 66, -216, 459, -648, 594, -323, 79, 0, 1, -24, 276, -2015, 10437, -40614, 122662, -292883, 557782, -848056, 1022204, -960627, 682349, -346274, 112275, -17493, 0, 1, -40, 780, -9864, 90798, -647352, 3714180, -17590911, 69997383
Offset: 1

Views

Author

Alois P. Heinz, Apr 26 2012

Keywords

Comments

The square grid graph G_(n,n) has n^2 = A000290(n) vertices and 2*n*(n-1) = A046092(n-1) edges. The chromatic polynomial of G_(n,n) has n^2+1 = A002522(n) coefficients.

Examples

			3 example graphs:                          o---o---o
.                                          |   |   |
.                             o---o        o---o---o
.                             |   |        |   |   |
.                o            o---o        o---o---o
Graph:        G_(1,1)        G_(2,2)        G_(3,3)
Vertices:        1              4              9
Edges:           0              4             12
The square grid graph G_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
  1,    0;
  1,   -4,     6,      -3,        0;
  1,  -12,    66,    -216,      459,       -648,         594, ...
  1,  -24,   276,   -2015,    10437,     -40614,      122662, ...
  1,  -40,   780,   -9864,    90798,    -647352,     3714180, ...
  1,  -60,  1770,  -34195,   486210,   -5421612,    49332660, ...
  1,  -84,  3486,  -95248,  1926585,  -30755376,   403410654, ...
  1, -112,  6216, -227871,  6205479, -133865298,  2382122274, ...
  1, -144, 10296, -487280, 17169852, -480376848, 11114098408, ...
  ...
		

Crossrefs

Columns 0, 1 give: A000012, (-1)*A046092(n-1).
Sums of absolute values of row elements give: A080690(n).

Programs

  • Mathematica
    Reverse /@ CoefficientList[Table[ChromaticPolynomial[GridGraph[{n, n}], x], {n, 5}], x] // Flatten (* Eric W. Weisstein, May 01 2017 *)

A286017 Number of matchings in the n-Hanoi graph.

Original entry on oeis.org

4, 125, 4007754, 132460031222098852477, 4782311037918647241715144272946478084784910628903006412891408
Offset: 1

Views

Author

Eric W. Weisstein, Jun 16 2017

Keywords

Crossrefs

Cf. A288839 (chromatic polynomials of the n-Hanoi graph).
Cf. A193233 (chromatic polynomial with highest coefficients first).
Cf. A137889 (directed Hamiltonian paths in the n-Hanoi graph).
Cf. A288490 (independent vertex sets in the n-Hanoi graph).
Cf. A193136 (spanning trees of the n-Hanoi graph).
Cf. A288796 (undirected paths in the n-Hanoi graph).

Programs

  • Mathematica
    next[{h0_, h1_, h2_, h3_}] := {h0^3 + 3*h0*h1^2 + 3*h1^2*h2 + h2^3, h0^2*h1 + 2*h0*h1*h2 + h1^3 + 2*h1*h2^2 + h1^2*h3 + h2^2*h3, h0*h1^2 + 2*h1^2*h2 + h0*h2^2 + 2*h1*h2*h3 + h2^3 + h2*h3^2, h1^3 + 3*h1*h2^2 + 3*h2^2*h3 + h3^3};
    a[n_] := Module[{v = {1, 1, 0, 0}}, For[i = 1, i <= n, i++, v = next[v]]; v[[1]]];
    Array[a, 5] (* Jean-François Alcover, Oct 02 2017, translated from Andrew Howroyd's PARI code *)
    Rest @ NestList[Function[{h, i, j, k}, {h^3 + 3 h i^2 + 3 i^2 j + j^3, h^2 i + 2 h i j + i^3 + 2 i j^2 + i^2 k + j^2 k, h i^2 + 2 i^2 j + h j^2 + 2 i j k + j^3 + j k^2, i^3 + 3 i j^2 + 3 j^2 k + k^3}] @@ # &, {1, 1, 0, 0}, 5][[All, 1]] (* Eric W. Weisstein, Oct 02 2017 *)
  • PARI
    \\ here h0..h3 are number of matchings in Hanoi graph less 0..3 apex vertices.
    Next(h0, h1, h2, h3)={[ h0^3 + 3*h0*h1^2 + 3*h1^2*h2 + h2^3, h0^2*h1 + 2*h0*h1*h2 + h1^3 + 2*h1*h2^2 + h1^2*h3 + h2^2*h3, h0*h1^2 + 2*h1^2*h2 + h0*h2^2 + 2*h1*h2*h3 + h2^3 + h2*h3^2, h1^3 + 3*h1*h2^2 + 3*h2^2*h3 + h3^3]}
    a(n) = {my(v); v=[1, 1, 0, 0]; for(i=1, n, v=Next(v[1], v[2], v[3], v[4])); v[1]} \\ Andrew Howroyd, Jun 17 2017

Extensions

a(5) from Andrew Howroyd, Jun 17 2017

A137889 Number of directed Hamiltonian paths in the n-Hanoi graph.

Original entry on oeis.org

6, 36, 384, 5460, 84816, 1347396, 21521184, 344194740, 5506552176, 88102619556, 1409633169984, 22554096102420, 360865400232336, 5773845857280516, 92381531540306784, 1478104495968880500, 23649671900884069296, 378394750275931314276, 6054316003862820691584
Offset: 1

Views

Author

Eric W. Weisstein, Feb 20 2008

Keywords

Crossrefs

Cf. A288839 (chromatic polynomials of the n-Hanoi graph).
Cf. A193233 (chromatic polynomial with highest coefficients first).
Cf. A288490 (independent vertex sets in the n-Hanoi graph).
Cf. A286017 (matchings in the n-Hanoi graph).
Cf. A193136 (spanning trees of the n-Hanoi graph).
Cf. A288796 (undirected paths in the n-Hanoi graph).

Programs

  • Mathematica
    Table[(208 + 16 3^(n + 2) + 13 4^(n + 2) + 25 16^n)/312, {n, 10}] (* Eric W. Weisstein, Jun 19 2017 *)
    RecurrenceTable[{a[1] == 6, a[n] == 3 a[n - 1] + (25 16^n + 64 4^n - 512)/384}, a, {n, 10}] (* Eric W. Weisstein, Jun 19 2017 *)
  • PARI
    a(n)=if(n==1,6,3*a(n-1) + (25*16^n + 64*4^n - 512)/384); \\ Andrew Howroyd, Jun 18 2017
    
  • PARI
    Vec(6*x*(1 - 18*x + 67*x^2 - 60*x^3) / ((1 - x)*(1 - 3*x)*(1 - 4*x)*(1 - 16*x)) + O(x^30)) \\ Colin Barker, Jul 30 2017

Formula

a(n) = (208 + 16*3^(n + 2) + 13*4^(n + 2) + 25*16^n)/312. - Eric W. Weisstein, Jun 19 2017
a(n) = 3*a(n-1) + (25*16^n + 64*4^n - 512)/384 for n > 1. - Andrew Howroyd, Jun 18 2017
From Colin Barker, Jul 30 2017: (Start)
G.f.: 6*x*(1 - 18*x + 67*x^2 - 60*x^3) / ((1 - x)*(1 - 3*x)*(1 - 4*x)*(1 - 16*x)).
a(n) = 24*a(n-1) - 147*a(n-2) + 316*a(n-3) - 192*a(n-4) for n>4.
(End)

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jun 18 2017

A288490 Number of independent vertex sets and vertex covers in the n-Hanoi graph.

Original entry on oeis.org

4, 52, 108144, 967067994163264, 691513106932053164262669026747190128930258944
Offset: 1

Views

Author

Eric W. Weisstein, Jun 16 2017

Keywords

Comments

Term a(6) has 135 decimal digits and a(7) has 404 decimal digits. - Andrew Howroyd, Jun 19 2017

Crossrefs

Cf. A297536 (maximum independent vertex sets in the n-Hanoi graph).
Cf. A321249 (maximal independent vertex sets in the n-Hanoi graph).
Cf. A288839 (chromatic polynomials of the n-Hanoi graph).
Cf. A193233 (chromatic polynomial with highest coefficients first).
Cf. A137889 (directed Hamiltonian paths in the n-Hanoi graph).
Cf. A286017 (matchings in the n-Hanoi graph).
Cf. A193136 (spanning trees of the n-Hanoi graph).
Cf. A288796 (undirected paths in the n-Hanoi graph).

Programs

  • Mathematica
    {1, 3, 3, 1} . # & /@ NestList[Function[{h, i, j, k}, {h^3 + 6 h^2 i + 9 h i^2 + 3 h^2 j + 2 i^3 + 6 h i j, h^2 i + 4 h i^2 + 2 h^2 j + h^2 k + 8 h i j + 3 i^3 + 4 i^2 j + 2 h j^2 + 2 h i k, h i^2 + 4 h i j + 2 i^3 + 7 i^2 j + 2 h i k + 3 h j^2 + 4 i j^2 + 2 i^2 k + 2 h j k, i^3 + 6 i^2 j + 9 i j^2 + 3 i^2 k + 2 j^3 + 6 i j k}] @@ # &, {1, 1, 0, 0}, 4]
  • PARI
    \\ Here h0..h3 is independent sets with 0..3 of the 3 apex vertices occupied.
    Next(h0,h1,h2,h3) = {[h0^3 + 6*h0^2*h1 + 9*h0*h1^2 + 3*h0^2*h2 + 2*h1^3 + 6*h0*h1*h2, h0^2*h1 + 4*h0*h1^2 + 2*h0^2*h2 + h0^2*h3 + 8*h0*h1*h2 + 3*h1^3 + 4*h1^2*h2 + 2*h0*h2^2 + 2*h0*h1*h3, h0*h1^2 + 4*h0*h1*h2 + 2*h1^3 + 7*h1^2*h2 + 2*h0*h1*h3 + 3*h0*h2^2 + 4*h1*h2^2 + 2*h1^2*h3 + 2*h0*h2*h3, h1^3 + 6*h1^2*h2 + 9*h1*h2^2 + 3*h1^2*h3 + 2*h2^3 + 6*h1*h2*h3]}
    a(n) = {my(v);v=[1,1,0,0]; for(i=2,n,v=Next(v[1],v[2],v[3],v[4])); v[1]+v[4]+3*(v[2]+v[3])} \\ Andrew Howroyd, Jun 20 2017
    
  • Python
    from itertools import islice
    def A288490_gen(): # generator of terms
        f,g,h,p = 1,1,0,0
        while True:
            yield f+3*(g+h)+p
            a, b = f+(g<<1), g+(h<<1)
            f,g,h,p = a*(f*(a+(b<<1)-h)+g**2), f*(p*a+b*(a+(g<<1))+2*h**2)+g**2*(g+(b<<1)), f*(g*(b+(h<<1))+3*h**2)+g*(g*((b<<1)+3*h)+(h<<1)**2)+p*(f*b+g*a), b*(g*(3*p+b+(h<<1))+h**2)
    A288490_list = list(islice(A288490_gen(),5)) # Chai Wah Wu, Jan 11 2024

Extensions

a(5) from Andrew Howroyd, Jun 19 2017

A288796 Number of (undirected) paths in the n-Hanoi graph.

Original entry on oeis.org

6, 279, 305868, 10210452146391, 5764678901089651494212581315486920, 7007522073643519244177937570089174585653471798870178330313274704558499562496773948518048745883
Offset: 1

Views

Author

Eric W. Weisstein, Jun 16 2017

Keywords

Comments

Terms up to about a(10) can be computed using a transfer matrix method. - Andrew Howroyd, Jun 18 2017

Crossrefs

Cf. A288839 (chromatic polynomials of the n-Hanoi graph).
Cf. A193233 (chromatic polynomial with highest coefficients first).
Cf. A137889 (directed Hamiltonian paths in the n-Hanoi graph).
Cf. A288490 (independent vertex sets in the n-Hanoi graph).
Cf. A286017 (matchings in the n-Hanoi graph).
Cf. A193136 (spanning trees of the n-Hanoi graph).

Extensions

a(4)-a(6) from Andrew Howroyd, Jun 18 2017

A288839 Triangle read by rows: coefficients of the chromatic polynomial of the n-Hanoi graph.

Original entry on oeis.org

0, 2, -3, 1, 0, 40, -180, 370, -455, 363, -190, 63, -12, 1, 0, 608000, -6960000, 40524800, -158999200, 468979200, -1099617480, 2117585600, -3419826630, 4697231261, -5541107684, 5652058863, -5007519752, 3863562996, -2598606825, 1522861581, -776022242, 342624075, -130362394, 42424338, -11689056, 2689452, -507084, 76293, -8806, 732, -39, 1
Offset: 1

Views

Author

Eric W. Weisstein, Jun 17 2017

Keywords

Comments

Equal to A193233 with ordering of row elements reversed.

Examples

			Polynomials:
(x-2)*(x-1)*x
(x-2)^3*(x-1)*x*(5-10*x+10*x^2-5*x^3+x^4)
(x-2)^6*(x-1)*x*(-9500+70750*x+...+x^19)
Coefficients:
0, 2, -3, 1;
0, 40, -180, 370, -455, 363, -190, 63, -12, 1;
0, 608000, -6960000, 40524800, -158999200, ..., -39, 1;
		

Crossrefs

Cf. A193233 (chromatic polynomial with highest coefficients first).
Cf. A137889 (directed Hamiltonian paths in the n-Hanoi graph).
Cf. A288490 (independent vertex sets in the n-Hanoi graph).
Cf. A286017 (matchings in the n-Hanoi graph).
Cf. A193136 (spanning trees of the n-Hanoi graph).
Cf. A288796 (undirected paths in the n-Hanoi graph).

A193136 Numbers of spanning trees of the Hanoi graphs.

Original entry on oeis.org

3, 135, 20503125, 119709242282867431640625, 39709946214287663263304759568121660162631769708241336047649383544921875
Offset: 1

Views

Author

Eric W. Weisstein, Jul 16 2011

Keywords

Crossrefs

Cf. A288839 (chromatic polynomials of the n-Hanoi graph).
Cf. A193233 (chromatic polynomial with highest coefficients first).
Cf. A137889 (directed Hamiltonian paths in the n-Hanoi graph).
Cf. A288490 (independent vertex sets in the n-Hanoi graph).
Cf. A286017 (matchings in the n-Hanoi graph).
Cf. A288796 (undirected paths in the n-Hanoi graph).

A193277 Triangle T(n,k), n>=1, 0<=k<=(3+3^n)/2, read by rows: row n gives the coefficients of the chromatic polynomial of the Sierpinski gasket graph S_n, highest powers first.

Original entry on oeis.org

1, -3, 2, 0, 1, -9, 32, -56, 48, -16, 0, 1, -27, 339, -2625, 14016, -54647, 160663, -362460, 631828, -848736, 866640, -653248, 343744, -112896, 17408, 0, 1, -81, 3204, -82476, 1553454, -22823259, 272286183, -2711405961, 22990179324
Offset: 1

Views

Author

Alois P. Heinz, Jul 20 2011

Keywords

Comments

The Sierpinski graph S_n has (3+3^n)/2 vertices and 3^n edges. The chromatic polynomial of S_n has (3+3^n)/2+1 coefficients.

Examples

			3 example graphs:                        o
.                                       / \
.                                      o---o
.                                     / \ / \
.                       o            o---o---o
.                      / \          / \     / \
.            o        o---o        o---o   o---o
.           / \      / \ / \      / \ / \ / \ / \
.          o---o    o---o---o    o---o---o---o---o
Graph:      S_1        S_2              S_3
Vertices:    3          6                15
Edges:       3          9                27
The Sierpinski graph S_1 is equal to the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
1,    -3,       2,           0;
1,    -9,      32,         -56,           48,              -16,  ...
1,   -27,     339,       -2625,        14016,           -54647,  ...
1,   -81,    3204,      -82476,      1553454,        -22823259,  ...
1,  -243,   29295,    -2336013,    138604878,      -6526886841,  ...
1,  -729,  265032,   -64069056,  11585834028,   -1671710903793,  ...
1, -2187, 2389419, -1738877625, 948268049436, -413339609377179,  ...
		

Crossrefs

A212084 Triangle T(n,k), n>=0, 0<=k<=2n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete bipartite graph K_(n,n), highest powers first.

Original entry on oeis.org

1, 1, -1, 0, 1, -4, 6, -3, 0, 1, -9, 36, -75, 78, -31, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0, 1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, 5552680, -6796926, 4787174
Offset: 0

Views

Author

Alois P. Heinz, Apr 30 2012

Keywords

Comments

The complete bipartite graph K_(n,n) has 2n vertices and n^2 = A000290(n) edges. The chromatic polynomial of K_(n,n) has 2n+1 = A005408(n) coefficients.

Examples

			3 example graphs:                     +-----------+
.                 o        o   o      o   o   o   |
.                 |        |\ /|      |\ /|\ /|\ /
.                 |        | X |      | X | X | X
.                 |        |/ \|      |/ \|/ \|/ \
.                 o        o   o      o   o   o   |
.                                     +-----------+
Graph:         K_(1,1)    K_(2,2)      K_(3,3)
Vertices:         2          4            6
Edges:            1          4            9
The complete bipartite graph K_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
  1;
  1,  -1,   0;
  1,  -4,   6,    -3,     0;
  1,  -9,  36,   -75,    78,     -31,       0;
  1, -16, 120,  -524,  1400,   -2236,    1930,     -675, ...
  1, -25, 300, -2200, 10650,  -34730,   75170,  -102545, ...
  1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, ...
  ...
		

Crossrefs

Columns k=0-2 give: A000012, (-1)*A000290, A083374.
Row sums and last elements of rows give: A000007.
Row lengths give: A005408.
Sums of absolute values of row elements give: A048163(n+1).
T(n,2n-1) = (-1)*A092552(n).

Programs

  • Maple
    P:= n-> add(Stirling2(n, k) *mul(q-i, i=0..k-1) *(q-k)^n, k=0..n):
    T:= n-> seq(coeff(P(n), q, 2*n-k), k=0..2*n):
    seq(T(n), n=1..8);

Formula

T(n,k) = [q^(2n-k)] Sum_{j=0..n} (q-j)^n * S2(n,j) * Product_{i=0..j-1} (q-i).

Extensions

T(0,0)=1 prepended by Alois P. Heinz, May 03 2024

A193283 Triangle T(n,k), n>=1, 0<=k<=n*(n+1)/2, read by rows: row n gives the coefficients of the chromatic polynomial of the n X n X n triangular grid, highest powers first.

Original entry on oeis.org

1, 0, 1, -3, 2, 0, 1, -9, 32, -56, 48, -16, 0, 1, -18, 144, -672, 2016, -4031, 5368, -4584, 2272, -496, 0, 1, -30, 419, -3612, 21477, -93207, 304555, -761340, 1463473, -2152758, 2385118, -1929184, 1075936, -369824, 58976, 0
Offset: 1

Views

Author

Alois P. Heinz, Jul 20 2011

Keywords

Comments

The n X n X n triangular grid has n rows with i vertices in row i. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has A000217(n) vertices and 3*A000217(n-1) edges altogether.

Examples

			4 example graphs:                           o
                                           / \
                              o           o---o
                             / \         / \ / \
                    o       o---o       o---o---o
                   / \     / \ / \     / \ / \ / \
              o   o---o   o---o---o   o---o---o---o
  n:          1     2         3             4
  Vertices:   1     3         6            10
  Edges:      0     3         9            18
The 2 X 2 X 2 triangular grid is equal to the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
  1,   0;
  1,  -3,   2,      0;
  1,  -9,  32,    -56,     48,     -16,       0;
  1, -18, 144,   -672,   2016,   -4031,    5368, ...
  1, -30, 419,  -3612,  21477,  -93207,  304555, ...
  1, -45, 965, -13115, 126720, -925528, 5303300, ...
  ...
		

Crossrefs

Showing 1-10 of 14 results. Next