A182368
Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the square grid graph G_(n,n), highest powers first.
Original entry on oeis.org
1, 0, 1, -4, 6, -3, 0, 1, -12, 66, -216, 459, -648, 594, -323, 79, 0, 1, -24, 276, -2015, 10437, -40614, 122662, -292883, 557782, -848056, 1022204, -960627, 682349, -346274, 112275, -17493, 0, 1, -40, 780, -9864, 90798, -647352, 3714180, -17590911, 69997383
Offset: 1
3 example graphs: o---o---o
. | | |
. o---o o---o---o
. | | | | |
. o o---o o---o---o
Graph: G_(1,1) G_(2,2) G_(3,3)
Vertices: 1 4 9
Edges: 0 4 12
The square grid graph G_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
1, 0;
1, -4, 6, -3, 0;
1, -12, 66, -216, 459, -648, 594, ...
1, -24, 276, -2015, 10437, -40614, 122662, ...
1, -40, 780, -9864, 90798, -647352, 3714180, ...
1, -60, 1770, -34195, 486210, -5421612, 49332660, ...
1, -84, 3486, -95248, 1926585, -30755376, 403410654, ...
1, -112, 6216, -227871, 6205479, -133865298, 2382122274, ...
1, -144, 10296, -487280, 17169852, -480376848, 11114098408, ...
...
Sums of absolute values of row elements give:
A080690(n).
-
Reverse /@ CoefficientList[Table[ChromaticPolynomial[GridGraph[{n, n}], x], {n, 5}], x] // Flatten (* Eric W. Weisstein, May 01 2017 *)
A286017
Number of matchings in the n-Hanoi graph.
Original entry on oeis.org
4, 125, 4007754, 132460031222098852477, 4782311037918647241715144272946478084784910628903006412891408
Offset: 1
Cf.
A288839 (chromatic polynomials of the n-Hanoi graph).
Cf.
A193233 (chromatic polynomial with highest coefficients first).
Cf.
A137889 (directed Hamiltonian paths in the n-Hanoi graph).
Cf.
A288490 (independent vertex sets in the n-Hanoi graph).
Cf.
A193136 (spanning trees of the n-Hanoi graph).
Cf.
A288796 (undirected paths in the n-Hanoi graph).
-
next[{h0_, h1_, h2_, h3_}] := {h0^3 + 3*h0*h1^2 + 3*h1^2*h2 + h2^3, h0^2*h1 + 2*h0*h1*h2 + h1^3 + 2*h1*h2^2 + h1^2*h3 + h2^2*h3, h0*h1^2 + 2*h1^2*h2 + h0*h2^2 + 2*h1*h2*h3 + h2^3 + h2*h3^2, h1^3 + 3*h1*h2^2 + 3*h2^2*h3 + h3^3};
a[n_] := Module[{v = {1, 1, 0, 0}}, For[i = 1, i <= n, i++, v = next[v]]; v[[1]]];
Array[a, 5] (* Jean-François Alcover, Oct 02 2017, translated from Andrew Howroyd's PARI code *)
Rest @ NestList[Function[{h, i, j, k}, {h^3 + 3 h i^2 + 3 i^2 j + j^3, h^2 i + 2 h i j + i^3 + 2 i j^2 + i^2 k + j^2 k, h i^2 + 2 i^2 j + h j^2 + 2 i j k + j^3 + j k^2, i^3 + 3 i j^2 + 3 j^2 k + k^3}] @@ # &, {1, 1, 0, 0}, 5][[All, 1]] (* Eric W. Weisstein, Oct 02 2017 *)
-
\\ here h0..h3 are number of matchings in Hanoi graph less 0..3 apex vertices.
Next(h0, h1, h2, h3)={[ h0^3 + 3*h0*h1^2 + 3*h1^2*h2 + h2^3, h0^2*h1 + 2*h0*h1*h2 + h1^3 + 2*h1*h2^2 + h1^2*h3 + h2^2*h3, h0*h1^2 + 2*h1^2*h2 + h0*h2^2 + 2*h1*h2*h3 + h2^3 + h2*h3^2, h1^3 + 3*h1*h2^2 + 3*h2^2*h3 + h3^3]}
a(n) = {my(v); v=[1, 1, 0, 0]; for(i=1, n, v=Next(v[1], v[2], v[3], v[4])); v[1]} \\ Andrew Howroyd, Jun 17 2017
A137889
Number of directed Hamiltonian paths in the n-Hanoi graph.
Original entry on oeis.org
6, 36, 384, 5460, 84816, 1347396, 21521184, 344194740, 5506552176, 88102619556, 1409633169984, 22554096102420, 360865400232336, 5773845857280516, 92381531540306784, 1478104495968880500, 23649671900884069296, 378394750275931314276, 6054316003862820691584
Offset: 1
Cf.
A288839 (chromatic polynomials of the n-Hanoi graph).
Cf.
A193233 (chromatic polynomial with highest coefficients first).
Cf.
A288490 (independent vertex sets in the n-Hanoi graph).
Cf.
A286017 (matchings in the n-Hanoi graph).
Cf.
A193136 (spanning trees of the n-Hanoi graph).
Cf.
A288796 (undirected paths in the n-Hanoi graph).
-
Table[(208 + 16 3^(n + 2) + 13 4^(n + 2) + 25 16^n)/312, {n, 10}] (* Eric W. Weisstein, Jun 19 2017 *)
RecurrenceTable[{a[1] == 6, a[n] == 3 a[n - 1] + (25 16^n + 64 4^n - 512)/384}, a, {n, 10}] (* Eric W. Weisstein, Jun 19 2017 *)
-
a(n)=if(n==1,6,3*a(n-1) + (25*16^n + 64*4^n - 512)/384); \\ Andrew Howroyd, Jun 18 2017
-
Vec(6*x*(1 - 18*x + 67*x^2 - 60*x^3) / ((1 - x)*(1 - 3*x)*(1 - 4*x)*(1 - 16*x)) + O(x^30)) \\ Colin Barker, Jul 30 2017
A288490
Number of independent vertex sets and vertex covers in the n-Hanoi graph.
Original entry on oeis.org
4, 52, 108144, 967067994163264, 691513106932053164262669026747190128930258944
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..7
- Hanlin Chen, Renfang Wu, Guihua Huang, and Hanyuan Deng, Independent Sets on the Towers of Hanoi Graphs, Ars Mathematica Contemporanea, volume 12, number 2, 2017, pages 247-260. Section 3, i_n = a(n).
- Eric Weisstein's World of Mathematics, Hanoi Graph
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Vertex Cover
Cf.
A297536 (maximum independent vertex sets in the n-Hanoi graph).
Cf.
A321249 (maximal independent vertex sets in the n-Hanoi graph).
Cf.
A288839 (chromatic polynomials of the n-Hanoi graph).
Cf.
A193233 (chromatic polynomial with highest coefficients first).
Cf.
A137889 (directed Hamiltonian paths in the n-Hanoi graph).
Cf.
A286017 (matchings in the n-Hanoi graph).
Cf.
A193136 (spanning trees of the n-Hanoi graph).
Cf.
A288796 (undirected paths in the n-Hanoi graph).
-
{1, 3, 3, 1} . # & /@ NestList[Function[{h, i, j, k}, {h^3 + 6 h^2 i + 9 h i^2 + 3 h^2 j + 2 i^3 + 6 h i j, h^2 i + 4 h i^2 + 2 h^2 j + h^2 k + 8 h i j + 3 i^3 + 4 i^2 j + 2 h j^2 + 2 h i k, h i^2 + 4 h i j + 2 i^3 + 7 i^2 j + 2 h i k + 3 h j^2 + 4 i j^2 + 2 i^2 k + 2 h j k, i^3 + 6 i^2 j + 9 i j^2 + 3 i^2 k + 2 j^3 + 6 i j k}] @@ # &, {1, 1, 0, 0}, 4]
-
\\ Here h0..h3 is independent sets with 0..3 of the 3 apex vertices occupied.
Next(h0,h1,h2,h3) = {[h0^3 + 6*h0^2*h1 + 9*h0*h1^2 + 3*h0^2*h2 + 2*h1^3 + 6*h0*h1*h2, h0^2*h1 + 4*h0*h1^2 + 2*h0^2*h2 + h0^2*h3 + 8*h0*h1*h2 + 3*h1^3 + 4*h1^2*h2 + 2*h0*h2^2 + 2*h0*h1*h3, h0*h1^2 + 4*h0*h1*h2 + 2*h1^3 + 7*h1^2*h2 + 2*h0*h1*h3 + 3*h0*h2^2 + 4*h1*h2^2 + 2*h1^2*h3 + 2*h0*h2*h3, h1^3 + 6*h1^2*h2 + 9*h1*h2^2 + 3*h1^2*h3 + 2*h2^3 + 6*h1*h2*h3]}
a(n) = {my(v);v=[1,1,0,0]; for(i=2,n,v=Next(v[1],v[2],v[3],v[4])); v[1]+v[4]+3*(v[2]+v[3])} \\ Andrew Howroyd, Jun 20 2017
-
from itertools import islice
def A288490_gen(): # generator of terms
f,g,h,p = 1,1,0,0
while True:
yield f+3*(g+h)+p
a, b = f+(g<<1), g+(h<<1)
f,g,h,p = a*(f*(a+(b<<1)-h)+g**2), f*(p*a+b*(a+(g<<1))+2*h**2)+g**2*(g+(b<<1)), f*(g*(b+(h<<1))+3*h**2)+g*(g*((b<<1)+3*h)+(h<<1)**2)+p*(f*b+g*a), b*(g*(3*p+b+(h<<1))+h**2)
A288490_list = list(islice(A288490_gen(),5)) # Chai Wah Wu, Jan 11 2024
A288796
Number of (undirected) paths in the n-Hanoi graph.
Original entry on oeis.org
6, 279, 305868, 10210452146391, 5764678901089651494212581315486920, 7007522073643519244177937570089174585653471798870178330313274704558499562496773948518048745883
Offset: 1
Cf.
A288839 (chromatic polynomials of the n-Hanoi graph).
Cf.
A193233 (chromatic polynomial with highest coefficients first).
Cf.
A137889 (directed Hamiltonian paths in the n-Hanoi graph).
Cf.
A288490 (independent vertex sets in the n-Hanoi graph).
Cf.
A286017 (matchings in the n-Hanoi graph).
Cf.
A193136 (spanning trees of the n-Hanoi graph).
A288839
Triangle read by rows: coefficients of the chromatic polynomial of the n-Hanoi graph.
Original entry on oeis.org
0, 2, -3, 1, 0, 40, -180, 370, -455, 363, -190, 63, -12, 1, 0, 608000, -6960000, 40524800, -158999200, 468979200, -1099617480, 2117585600, -3419826630, 4697231261, -5541107684, 5652058863, -5007519752, 3863562996, -2598606825, 1522861581, -776022242, 342624075, -130362394, 42424338, -11689056, 2689452, -507084, 76293, -8806, 732, -39, 1
Offset: 1
Polynomials:
(x-2)*(x-1)*x
(x-2)^3*(x-1)*x*(5-10*x+10*x^2-5*x^3+x^4)
(x-2)^6*(x-1)*x*(-9500+70750*x+...+x^19)
Coefficients:
0, 2, -3, 1;
0, 40, -180, 370, -455, 363, -190, 63, -12, 1;
0, 608000, -6960000, 40524800, -158999200, ..., -39, 1;
Cf.
A193233 (chromatic polynomial with highest coefficients first).
Cf.
A137889 (directed Hamiltonian paths in the n-Hanoi graph).
Cf.
A288490 (independent vertex sets in the n-Hanoi graph).
Cf.
A286017 (matchings in the n-Hanoi graph).
Cf.
A193136 (spanning trees of the n-Hanoi graph).
Cf.
A288796 (undirected paths in the n-Hanoi graph).
A193136
Numbers of spanning trees of the Hanoi graphs.
Original entry on oeis.org
3, 135, 20503125, 119709242282867431640625, 39709946214287663263304759568121660162631769708241336047649383544921875
Offset: 1
Cf.
A288839 (chromatic polynomials of the n-Hanoi graph).
Cf.
A193233 (chromatic polynomial with highest coefficients first).
Cf.
A137889 (directed Hamiltonian paths in the n-Hanoi graph).
Cf.
A288490 (independent vertex sets in the n-Hanoi graph).
Cf.
A286017 (matchings in the n-Hanoi graph).
Cf.
A288796 (undirected paths in the n-Hanoi graph).
A193277
Triangle T(n,k), n>=1, 0<=k<=(3+3^n)/2, read by rows: row n gives the coefficients of the chromatic polynomial of the Sierpinski gasket graph S_n, highest powers first.
Original entry on oeis.org
1, -3, 2, 0, 1, -9, 32, -56, 48, -16, 0, 1, -27, 339, -2625, 14016, -54647, 160663, -362460, 631828, -848736, 866640, -653248, 343744, -112896, 17408, 0, 1, -81, 3204, -82476, 1553454, -22823259, 272286183, -2711405961, 22990179324
Offset: 1
3 example graphs: o
. / \
. o---o
. / \ / \
. o o---o---o
. / \ / \ / \
. o o---o o---o o---o
. / \ / \ / \ / \ / \ / \ / \
. o---o o---o---o o---o---o---o---o
Graph: S_1 S_2 S_3
Vertices: 3 6 15
Edges: 3 9 27
The Sierpinski graph S_1 is equal to the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
1, -3, 2, 0;
1, -9, 32, -56, 48, -16, ...
1, -27, 339, -2625, 14016, -54647, ...
1, -81, 3204, -82476, 1553454, -22823259, ...
1, -243, 29295, -2336013, 138604878, -6526886841, ...
1, -729, 265032, -64069056, 11585834028, -1671710903793, ...
1, -2187, 2389419, -1738877625, 948268049436, -413339609377179, ...
A212084
Triangle T(n,k), n>=0, 0<=k<=2n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete bipartite graph K_(n,n), highest powers first.
Original entry on oeis.org
1, 1, -1, 0, 1, -4, 6, -3, 0, 1, -9, 36, -75, 78, -31, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0, 1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, 5552680, -6796926, 4787174
Offset: 0
3 example graphs: +-----------+
. o o o o o o |
. | |\ /| |\ /|\ /|\ /
. | | X | | X | X | X
. | |/ \| |/ \|/ \|/ \
. o o o o o o |
. +-----------+
Graph: K_(1,1) K_(2,2) K_(3,3)
Vertices: 2 4 6
Edges: 1 4 9
The complete bipartite graph K_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
1;
1, -1, 0;
1, -4, 6, -3, 0;
1, -9, 36, -75, 78, -31, 0;
1, -16, 120, -524, 1400, -2236, 1930, -675, ...
1, -25, 300, -2200, 10650, -34730, 75170, -102545, ...
1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, ...
...
Row sums and last elements of rows give:
A000007.
Sums of absolute values of row elements give:
A048163(n+1).
-
P:= n-> add(Stirling2(n, k) *mul(q-i, i=0..k-1) *(q-k)^n, k=0..n):
T:= n-> seq(coeff(P(n), q, 2*n-k), k=0..2*n):
seq(T(n), n=1..8);
A193283
Triangle T(n,k), n>=1, 0<=k<=n*(n+1)/2, read by rows: row n gives the coefficients of the chromatic polynomial of the n X n X n triangular grid, highest powers first.
Original entry on oeis.org
1, 0, 1, -3, 2, 0, 1, -9, 32, -56, 48, -16, 0, 1, -18, 144, -672, 2016, -4031, 5368, -4584, 2272, -496, 0, 1, -30, 419, -3612, 21477, -93207, 304555, -761340, 1463473, -2152758, 2385118, -1929184, 1075936, -369824, 58976, 0
Offset: 1
4 example graphs: o
/ \
o o---o
/ \ / \ / \
o o---o o---o---o
/ \ / \ / \ / \ / \ / \
o o---o o---o---o o---o---o---o
n: 1 2 3 4
Vertices: 1 3 6 10
Edges: 0 3 9 18
The 2 X 2 X 2 triangular grid is equal to the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
1, 0;
1, -3, 2, 0;
1, -9, 32, -56, 48, -16, 0;
1, -18, 144, -672, 2016, -4031, 5368, ...
1, -30, 419, -3612, 21477, -93207, 304555, ...
1, -45, 965, -13115, 126720, -925528, 5303300, ...
...
Showing 1-10 of 14 results.
Comments