cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193277 Triangle T(n,k), n>=1, 0<=k<=(3+3^n)/2, read by rows: row n gives the coefficients of the chromatic polynomial of the Sierpinski gasket graph S_n, highest powers first.

Original entry on oeis.org

1, -3, 2, 0, 1, -9, 32, -56, 48, -16, 0, 1, -27, 339, -2625, 14016, -54647, 160663, -362460, 631828, -848736, 866640, -653248, 343744, -112896, 17408, 0, 1, -81, 3204, -82476, 1553454, -22823259, 272286183, -2711405961, 22990179324
Offset: 1

Views

Author

Alois P. Heinz, Jul 20 2011

Keywords

Comments

The Sierpinski graph S_n has (3+3^n)/2 vertices and 3^n edges. The chromatic polynomial of S_n has (3+3^n)/2+1 coefficients.

Examples

			3 example graphs:                        o
.                                       / \
.                                      o---o
.                                     / \ / \
.                       o            o---o---o
.                      / \          / \     / \
.            o        o---o        o---o   o---o
.           / \      / \ / \      / \ / \ / \ / \
.          o---o    o---o---o    o---o---o---o---o
Graph:      S_1        S_2              S_3
Vertices:    3          6                15
Edges:       3          9                27
The Sierpinski graph S_1 is equal to the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
1,    -3,       2,           0;
1,    -9,      32,         -56,           48,              -16,  ...
1,   -27,     339,       -2625,        14016,           -54647,  ...
1,   -81,    3204,      -82476,      1553454,        -22823259,  ...
1,  -243,   29295,    -2336013,    138604878,      -6526886841,  ...
1,  -729,  265032,   -64069056,  11585834028,   -1671710903793,  ...
1, -2187, 2389419, -1738877625, 948268049436, -413339609377179,  ...
		

Crossrefs