A193397 Wiener index of a benzenoid consisting of a double-step spiral chain of n hexagons (n>=2, s=21; see the Gutman et al. reference).
109, 271, 553, 955, 1541, 2279, 3265, 4435, 5917, 7615, 9689, 12011, 14773, 17815, 21361, 25219, 29645, 34415, 39817, 45595, 52069, 58951, 66593, 74675, 83581, 92959, 103225, 113995, 125717, 137975, 151249, 165091, 180013, 195535, 212201, 229499, 248005, 267175, 287617
Offset: 2
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..10000
- A. A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert, Wiener Index of Hexagonal Systems , Acta Applicandae Mathematicae 72 (2002), pp. 247-294.
- I. Gutman, S. Klavzar, M. Petkovsek, and P. Zigert, On Hosoya polynomials of benzenoid graphs, Comm. Math. Comp. Chem. (MATCH), 43, 2001, 49-66.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Magma
[4*n^3 + 20*n^2 - 12*n + 2*(-1)^n*(n-2) + 21: n in [2..40]]; // Vincenzo Librandi, Jul 26 2011
-
Maple
a := proc (n) options operator, arrow: 4*n^3+20*n^2-12*n+2*(-1)^n*(n-2)+21 end proc: seq(a(n), n = 2 .. 40);
-
Mathematica
Table[4n^3+20n^2-12n+2(-1)^n(n-2)+21,{n,2,40}] (* or *) LinearRecurrence[ {2,1,-4,1,2,-1},{109,271,553,955,1541,2279},39] (* Harvey P. Dale, Aug 26 2011 *)
Formula
a(n) = 4*n^3 + 20*n^2 - 12*n + 2*(-1)^n*(n-2) + 21.
G.f.: x^2*(109+53*x-98*x^2+14*x^3+53*x^4-35*x^5)/((1+x)^2*(1-x)^4). - Bruno Berselli, Jul 27 2011
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6), with a(2)=109, a(3)=271, a(4)=553, a(5)=955, a(6)=1541, a(7)=2279. - Harvey P. Dale, Aug 26 2011