cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193397 Wiener index of a benzenoid consisting of a double-step spiral chain of n hexagons (n>=2, s=21; see the Gutman et al. reference).

Original entry on oeis.org

109, 271, 553, 955, 1541, 2279, 3265, 4435, 5917, 7615, 9689, 12011, 14773, 17815, 21361, 25219, 29645, 34415, 39817, 45595, 52069, 58951, 66593, 74675, 83581, 92959, 103225, 113995, 125717, 137975, 151249, 165091, 180013, 195535, 212201, 229499, 248005, 267175, 287617
Offset: 2

Views

Author

Emeric Deutsch, Jul 25 2011

Keywords

Crossrefs

Programs

  • Magma
    [4*n^3 + 20*n^2 - 12*n + 2*(-1)^n*(n-2) + 21: n in [2..40]]; // Vincenzo Librandi, Jul 26 2011
  • Maple
    a := proc (n) options operator, arrow: 4*n^3+20*n^2-12*n+2*(-1)^n*(n-2)+21 end proc: seq(a(n), n = 2 .. 40);
  • Mathematica
    Table[4n^3+20n^2-12n+2(-1)^n(n-2)+21,{n,2,40}] (* or *) LinearRecurrence[ {2,1,-4,1,2,-1},{109,271,553,955,1541,2279},39] (* Harvey P. Dale, Aug 26 2011 *)

Formula

a(n) = 4*n^3 + 20*n^2 - 12*n + 2*(-1)^n*(n-2) + 21.
G.f.: x^2*(109+53*x-98*x^2+14*x^3+53*x^4-35*x^5)/((1+x)^2*(1-x)^4). - Bruno Berselli, Jul 27 2011
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6), with a(2)=109, a(3)=271, a(4)=553, a(5)=955, a(6)=1541, a(7)=2279. - Harvey P. Dale, Aug 26 2011