cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001703 Decimal concatenation of n, n+1, and n+2.

Original entry on oeis.org

12, 123, 234, 345, 456, 567, 678, 789, 8910, 91011, 101112, 111213, 121314, 131415, 141516, 151617, 161718, 171819, 181920, 192021, 202122, 212223, 222324, 232425, 242526, 252627, 262728, 272829, 282930, 293031, 303132, 313233, 323334, 333435, 343536, 353637, 363738
Offset: 0

Views

Author

mag(AT)laurel.salles.entpe.fr

Keywords

Comments

All terms are divisible by 3. Every third term starting with a(2) is divisible by 9. - Alonso del Arte, May 27 2013

Examples

			a(8) = 8910 since the three consecutive numbers starting with 8 are 8, 9, 10, and these concatenate to 8910. (This is the first term that differs from A193431).
		

Crossrefs

Cf. A074991.
For concatenations of exactly k consecutive integers see A000027 (k=1), A127421 (k=2), A279204 (k=4). For 2 or more see A035333.
See also A127422, A127423, A127424.

Programs

  • Maple
    read(transforms) :
    A001703 := proc(n)
        digcatL([n,n+1,n+2]) ;
    end proc:
    seq(A001703(n),n=1..20) ; # R. J. Mathar, Mar 29 2017
    # Third Maple program:
    a:= n-> parse(cat(n, n+1, n+2)):
    seq(a(n), n=0..50); # Alois P. Heinz, Mar 29 2017
  • Mathematica
    concat3Nums[n_] := FromDigits@ Flatten@ IntegerDigits[{n, n + 1, n + 2}]; Array[concat3Nums, 25] (* Robert G. Wilson v *)
  • PARI
    a(n)=eval(Str(n,n+1,n+2)) \\ Charles R Greathouse IV, Oct 08 2011
    
  • Python
    for n in range(100): print(int(str(n)+str(n+1)+str(n+2))) # David F. Marrs, Sep 18 2018

Formula

The portion of the sequence with all three numbers having d digits - i.e., n in 10^(d-1)..10^d-3 - is in arithmetic sequence: a(n) = (10^(2*d)+10^d+1)*n + (10^d+2). - Franklin T. Adams-Watters, Oct 07 2011

Extensions

Initial term 12 added and offset changed to 0 at the suggestion of R. J. Mathar. - N. J. A. Sloane, Mar 29 2017

A136414 Put the natural numbers together without spaces and read them two at a time advancing one space each time.

Original entry on oeis.org

12, 23, 34, 45, 56, 67, 78, 89, 91, 10, 1, 11, 11, 12, 21, 13, 31, 14, 41, 15, 51, 16, 61, 17, 71, 18, 81, 19, 92, 20, 2, 21, 12, 22, 22, 23, 32, 24, 42, 25, 52, 26, 62, 27, 72, 28, 82, 29, 93, 30, 3, 31, 13, 32, 23, 33, 33, 34, 43, 35, 53, 36, 63, 37, 73, 38, 83, 39, 94, 40, 4, 41, 14
Offset: 1

Views

Author

Ben Paul Thurston, Mar 31 2008

Keywords

Comments

a(n) = A162711(n,2) for n>1. - Reinhard Zumkeller, Jul 11 2009

Examples

			34 is the third entry because the natural numbers written together look like 1234567891011 and reading them off two at a time produces 12, 23, 34, ...
		

Crossrefs

Programs

  • Haskell
    a136414 n = a136414_list !! (n-1)
    a136414_list = zipWith (+) (tail a007376_list) $ map (10 *) a007376_list
    -- Reinhard Zumkeller, Jul 28 2011

Formula

a(n) = 10*A007376(n) + A007376(n+1). - Reinhard Zumkeller, Jul 11 2009

Extensions

More terms from Reinhard Zumkeller, Jul 11 2009

A193493 Put the natural numbers together without spaces and read them five at a time advancing one space each time.

Original entry on oeis.org

12345, 23456, 34567, 45678, 56789, 67891, 78910, 89101, 91011, 10111, 1112, 11121, 11213, 12131, 21314, 13141, 31415, 14151, 41516, 15161, 51617, 16171, 61718, 17181, 71819, 18192, 81920, 19202, 92021, 20212, 2122, 21222, 12223, 22232, 22324, 23242, 32425
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 28 2011

Keywords

Crossrefs

Programs

  • Haskell
    a193493 n = a193493_list !! (n-1)
    a193493_list = f a007376_list where
       f xs'@(x:xs) = ((foldl (\u v -> 10*u + v) 0) $ take 5 xs') : f xs
  • Mathematica
    nn=40;With[{tbl=Flatten[IntegerDigits/@Range[nn]]},Table[FromDigits[ Take[tbl,{n,n+4}]],{n,nn}]](* Harvey P. Dale, Aug 10 2011 *)

Formula

a(n) = Sum (A007376(n+k)*10^(4-k): 0 <= k <= 4).

A193492 Put the natural numbers together without spaces and read them four at a time advancing one space each time.

Original entry on oeis.org

1234, 2345, 3456, 4567, 5678, 6789, 7891, 8910, 9101, 1011, 111, 1112, 1121, 1213, 2131, 1314, 3141, 1415, 4151, 1516, 5161, 1617, 6171, 1718, 7181, 1819, 8192, 1920, 9202, 2021, 212, 2122, 1222, 2223, 2232, 2324, 3242, 2425, 4252, 2526, 5262, 2627, 6272
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 28 2011

Keywords

Crossrefs

Programs

  • Haskell
    a193492 n = a193492_list !! (n-1)
    a193492_list = f a007376_list where
       f xs'@(x:xs) = ((foldl (\u v -> 10*u + v) 0) $ take 4 xs') : f xs
  • Mathematica
    FromDigits/@Partition[Flatten[IntegerDigits/@Range[30]],4,1] (* Harvey P. Dale, Aug 19 2012 *)

Formula

a(n) = 10*(10*(10*A007376(n)+A007376(n+1))+A007376(n+2))+A007376(n+3).
Showing 1-4 of 4 results.