A193386 Number of even divisors of phi(n).
0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 4, 2, 3, 3, 4, 2, 3, 3, 4, 2, 2, 3, 4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 6, 4, 6, 3, 6, 4, 6, 4, 4, 4, 6, 2, 2, 4, 4, 4, 5, 6, 4, 3, 6, 6, 6, 4, 2, 4, 8, 4, 6, 5, 8, 4, 4, 5, 4, 6, 4, 6, 9, 6, 6, 6, 8, 6, 4, 5, 4, 6, 2, 6, 6, 4, 6, 6, 6, 6, 9, 4, 8, 2, 9, 5, 10, 4, 8, 6, 6, 5, 4, 8, 8
Offset: 1
Keywords
Examples
a(13) = 4 because phi(13) = 12 and the 4 even divisors are { 2, 4, 6, 12}.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
f[n_] := Block[{d = Divisors[EulerPhi[n]]}, Count[EvenQ[d], True]]; Table[f[n], {n, 80}] (* Second program: *) Array[DivisorSum[EulerPhi@ #, 1 &, EvenQ] &, 105] (* Michael De Vlieger, Dec 04 2017 *)
-
PARI
A193386(n) = sumdiv(eulerphi(n), d, 1-(d%2)); \\ Antti Karttunen, Dec 04 2017
Formula
Extensions
More terms from Antti Karttunen, Dec 04 2017
Comments