cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A193606 Augmentation of the triangle A193605. See Comments.

Original entry on oeis.org

1, 1, 3, 1, 7, 17, 1, 12, 57, 127, 1, 18, 134, 531, 1125, 1, 25, 265, 1556, 5513, 11279, 1, 33, 470, 3793, 19152, 62675, 124837, 1, 42, 772, 8175, 55297, 250524, 771121, 1502679, 1, 52, 1197, 16087, 140269, 834879, 3478204, 10185019, 19480445
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2011

Keywords

Comments

For an introduction to the unary operation "augmentation" as applied to triangular arrays or sequences of polynomials, see A193091.

Examples

			First five rows of A193606:
1
1...3
1...7....17
1...12...57....127
1...18...134...531...1125
		

Crossrefs

Programs

  • Mathematica
    u[n_, k_] := Sum[Binomial[n, h], {h, 0, k}]
    p[n_, k_] := Sum[u[n, h], {h, 0, k}]
    Table[p[n, k], {n, 0, 12}, {k, 0, n}] (* A193695 *)
    m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]
    TableForm[m[4]]
    w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];
    v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};
    v[n_] := v[n - 1].m[n]
    TableForm[Table[v[n], {n, 0, 6}]] (* A193606 *)
    Flatten[Table[v[n], {n, 0, 8}]]

A210489 Array read by ascending antidiagonals where row n contains the second partial sums of row n of Pascal's triangle.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 8, 7, 5, 1, 6, 12, 12, 9, 6, 1, 7, 17, 20, 16, 11, 7, 1, 8, 23, 32, 28, 20, 13, 8, 1, 9, 30, 49, 48, 36, 24, 15, 9, 1, 10, 38, 72, 80, 64, 44, 28, 17, 10, 1, 11, 47, 102, 129, 112, 80, 52, 32, 19, 11, 1, 12, 57, 140, 201, 192, 144, 96, 60, 36, 21, 12
Offset: 0

Views

Author

Jakub Jaroslaw Ciaston, Jan 23 2013

Keywords

Comments

Appears to be a transposed version of A188553 with a leading column of 1's.

Examples

			Table starts:
1,  2,   3,     4,      5,      6,      7,      8,      9,     10
1,  3,   5,     7,      9,     11,     13,     15,     17,     19
1,  4,   8,    12,     16,     20,     24,     28,     32,     36
1,  5,  12,    20,     28,     36,     44,     52,     60,     68
1,  6,  17,    32,     48,     64,     80,     96,    112,    128
1,  7,  23,    49,     80,    112,    144,    176,    208,    240
1,  8,  30,    72,    129,    192,    256,    320,    384,    448
1,  9,  38,   102,    201,    321,    448,    576,    704,    832
1, 10,  47,   140,    303,    522,    769,   1024,   1280,   1536
1, 11,  57,   187,    443,    825,   1291,   1793,   2304,   2816
1, 12,  68,   244,    630,   1268,   2116,   3084,   4097,   5120
1, 13,  80,   312,    874,   1898,   3384,   5200,   7181,   9217
1, 14,  93,   392,   1186,   2772,   5282,   8584,  12381,  16398
1, 15, 107,   485,   1578,   3958,   8054,  13866,  20965,  28779
1, 16, 122,   592,   2063,   5536,  12012,  21920,  34831,  49744
1, 17, 138,   714,   2655,   7599,  17548,  33932,  56751,  84575
1, 18, 155,   852,   3369,  10254,  25147,  51480,  90683, 141326
1, 19, 173,  1007,   4221,  13623,  35401,  76627, 142163, 232009
1, 20, 192,  1180,   5228,  17844,  49024, 112028, 218790, 374172
1, 21, 212,  1372,   6408,  23072,  66868, 161052, 330818, 592962
1, 22, 233,  1584,   7780,  29480,  89940, 227920, 491870, 923780
1, 23, 255,  1817,   9364,  37260, 119420, 317860, 719790,1415650
1, 24, 278,  2072,  11181,  46624, 156680, 437280,1037650,2135440
1, 25, 302,  2350,  13253,  57805, 203304, 593960,1474930,3173090
1, 26, 327,  2652,  15603,  71058, 261109, 797264,2068890,4648020
1, 27, 353,  2979,  18255,  86661, 332167,1058373,2866154,6716910
1, 28, 380,  3332,  21234, 104916, 418828,1390540,3924527,9583064
		

Crossrefs

Cf. A104734, A132379 (another transposed variant), A188553, A193605.

Programs

  • PARI
    T(n,m) = {sum(k=1, m, k*binomial(n,m-k))}
    { for(n=0, 10, for(m=1, 10, print1(T(n,m), ", ")); print) } \\ Andrew Howroyd, Apr 28 2020

Formula

T(n,k) = A193605(n,k).
T(n,m) = Sum_{k=1..m} k*binomial(n,m-k). - Vladimir Kruchinin, Apr 06 2018

Extensions

Offset corrected and terms a(55) and beyond from Andrew Howroyd, Apr 28 2020
Showing 1-2 of 2 results.