cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A193605 Triangle: (row n) = partial sums of partial sums of row n of Pascal's triangle.

Original entry on oeis.org

1, 1, 3, 1, 4, 8, 1, 5, 12, 20, 1, 6, 17, 32, 48, 1, 7, 23, 49, 80, 112, 1, 8, 30, 72, 129, 192, 256, 1, 9, 38, 102, 201, 321, 448, 576, 1, 10, 47, 140, 303, 522, 769, 1024, 1280, 1, 11, 57, 187, 443, 825, 1291, 1793, 2304, 2816, 1, 12, 68, 244, 630, 1268, 2116, 3084, 4097, 5120, 6144
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2011

Keywords

Comments

The n-th row is contains the partial sums of the n-th row of the array interpretation of A052509. - R. J. Mathar, Apr 22 2013

Examples

			First 5 rows of A193605:
1
1....3
1....4....8
1....5....12....20
1....6....17....32....48
		

Crossrefs

Cf. A193606.

Programs

  • Maple
    A052509 := proc(n,k)
        if k = 0 then
            1;
        else
            procname(n,k-1)+binomial(n,k) ;
        end if;
    end proc:
    A193605 := proc(n,k)
        if k = 0 then
            1;
        else
            procname(n,k-1)+A052509(n,k) ;
        end if;
    end proc: # R. J. Mathar, Apr 22 2013
    # Alternative after Vladimir Kruchinin:
    gf := ((x*y-1)/(1-2*x*y))^2/(1-x*y-x): ser := series(gf, x, 12):
    p := n -> coeff(ser,x,n): row := n -> seq(coeff(p(n),y,k), k=0..n):
    seq(row(n), n=0..10); # Peter Luschny, Aug 19 2019
  • Mathematica
    u[n_, k_] := Sum[Binomial[n, h], {h, 0, k}]
    p[n_, k_] := Sum[u[n, h], {h, 0, k}]
    Table[p[n, k], {n, 0, 12}, {k, 0, n}]
    Flatten[%]   (* A193605 as a sequence *)
    TableForm[Table[p[n, k], {n, 0, 12}, {k, 0, n}]]  (* A193605 as a triangle *)
  • Maxima
    T(n,k):=sum(((i+3)*2^(i-2))*binomial(n-i,k-i),i,1,min(n,k))+binomial(n,k);
    /* Vladimir Kruchinin, Aug 20 2019 */

Formula

Writing the general term as T(n,k), for 0<=k<=n:
T(n,n)=A001792, T(n,n-1)=A001787, T(n,n-2)=A000337, T(n,n-3)=A045618.
T(n-1,k-1) + T(n-1,k) = T(n,k). - David A. Corneth, Oct 18 2016
G.f.: -(1-x*y)^2/(4*x^3*y^3+(4*x^3-8*x^2)*y^2+(5*x-4*x^2)*y+x-1). - Vladimir Kruchinin, Aug 19 2019
T(n,k) = C(n,k)+Sum_{i=1..n} (i+3)*2^(i-2)*C(n-i,k-i), - Vladimir Kruchinin, Aug 20 2019

Extensions

More terms from David A. Corneth, Oct 18 2016
Showing 1-1 of 1 results.