A193758 Denominator of H(n)/H(n-1), where H(n) is the n-th harmonic number = Sum_{k=1..n} 1/k.
2, 9, 22, 125, 137, 343, 726, 6849, 7129, 81191, 83711, 1118273, 1145993, 1171733, 2391514, 41421503, 42142223, 271211719, 275295799, 55835135, 18858053, 439143531, 1332950097, 33695573875, 34052522467, 309561680403, 312536252003, 9146733078187, 9227046511387
Offset: 2
Links
- Michael S. Branicky, Table of n, a(n) for n = 2..1001
Programs
-
Maple
H:= n-> add(1/k, k=1..n): seq(denom(H(n)/H(n-1)), n=2..25);
-
Mathematica
h[n_] := Sum[1/i, {i, n}]; Table[Denominator[h[n]/h[n - 1]], {n, 2, 50}] (* T. D. Noe, Aug 04 2011 *) Denominator[#[[2]]/#[[1]]]&/@Partition[HarmonicNumber[Range[30]],2,1] (* Harvey P. Dale, Jul 05 2015 *)
-
Python
from fractions import Fraction def aupton(nn): Hnm1, alst = Fraction(1, 1), [] for n in range(2, nn+1): Hn = Hnm1 + Fraction(1, n) alst.append((Hn/Hnm1).denominator) Hnm1 = Hn return alst print(aupton(30)) # Michael S. Branicky, Feb 09 2021
Formula
a(n) = denominator(H(n)/H(n-1)), where H(n) = Sum_{k=1..n} 1/k.
a(n) = numerator(n*H(n))-denominator(n*H(n)). - Gary Detlefs, Sep 05 2011
Comments