cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193758 Denominator of H(n)/H(n-1), where H(n) is the n-th harmonic number = Sum_{k=1..n} 1/k.

Original entry on oeis.org

2, 9, 22, 125, 137, 343, 726, 6849, 7129, 81191, 83711, 1118273, 1145993, 1171733, 2391514, 41421503, 42142223, 271211719, 275295799, 55835135, 18858053, 439143531, 1332950097, 33695573875, 34052522467, 309561680403, 312536252003, 9146733078187, 9227046511387
Offset: 2

Views

Author

Gary Detlefs, Aug 04 2011

Keywords

Comments

a(n) mod n^3 = 0 iff n is prime > 3. - Gary Detlefs, Jan 30 2013

Crossrefs

Numerators are in A096617.

Programs

  • Maple
    H:= n-> add(1/k, k=1..n): seq(denom(H(n)/H(n-1)), n=2..25);
  • Mathematica
    h[n_] := Sum[1/i, {i, n}]; Table[Denominator[h[n]/h[n - 1]], {n, 2, 50}] (* T. D. Noe, Aug 04 2011 *)
    Denominator[#[[2]]/#[[1]]]&/@Partition[HarmonicNumber[Range[30]],2,1] (* Harvey P. Dale, Jul 05 2015 *)
  • Python
    from fractions import Fraction
    def aupton(nn):
      Hnm1, alst = Fraction(1, 1), []
      for n in range(2, nn+1):
        Hn = Hnm1 + Fraction(1, n)
        alst.append((Hn/Hnm1).denominator)
        Hnm1 = Hn
      return alst
    print(aupton(30)) # Michael S. Branicky, Feb 09 2021

Formula

a(n) = denominator(H(n)/H(n-1)), where H(n) = Sum_{k=1..n} 1/k.
a(n) = numerator(n*H(n))-denominator(n*H(n)). - Gary Detlefs, Sep 05 2011