A193759 Array, by antidiagonals, A(k,n) is the number of prime factors of n^(2^k) + 1, counted with multiplicity.
0, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 1, 0, 1, 1, 3, 1, 2, 0, 1, 2, 2, 1, 2, 1, 0, 1, 2, 2, 2, 3, 1, 3, 0, 1, 2, 2, 2, 3, 2, 2, 2, 0, 1, 2, 6, 2, 4, 3, 3, 2, 2, 0, 1, 3, 5, 2, 4, 3, 3, 3, 3, 1, 3, 0, 1, 4, 7, 3, 4, 3, 4, 3, 2, 2, 2, 1, 0, 1, 5
Offset: 0
Examples
A(4,5) = 3 because 1+5^16 = 152587890626 = 2 * 2593 * 29423041, which has 3 prime factors. The array begins: ================================================================ ....|n=0|n=1|n=2|n=3|n=4|n=5|n=6|n=7|n=8|n=9|.10|.11|comment ====|===|===|===|===|===|===|===|===|===|===|===|===|=========== k=0.|.0.|.1.|.1.|.2.|.1.|.2.|.1.|.3.|.2.|.2.|.1.|.3.|A001222 k=1.|.0.|.1.|.1.|.2.|.1.|.2.|.1.|.3.|.2.|.2.|.1.|.2.|A193330 k=2.|.0.|.1.|.1.|.2.|.1.|.2.|.1.|.2.|.2.|.3.|.2.|.2.|A193929 k=3.|.0.|.1.|.1.|.3.|.1.|.3.|.2.|.3.|.3.|.2.|.2.|.3.|A194003 k=4.|.0.|.1.|.1.|.2.|.2.|.3.|.3.|.3.|.3.|.2.|.5.|.3.|not in OEIS k=5.|.0.|.1.|.2.|.2.|.2.|.4.|.3.|.4.|.3.|.2.|.4.|.4.|not in OEIS ================================================================
Extensions
Edited by Alois P. Heinz, Aug 11 2011
More terms from Max Alekseyev, Sep 09 2011
Comments