cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A194579 Numbers whose sum of the their nonprime divisors is prime.

Original entry on oeis.org

4, 6, 8, 10, 12, 16, 22, 27, 28, 32, 40, 44, 46, 52, 58, 68, 80, 82, 88, 106, 112, 116, 124, 125, 136, 148, 164, 165, 166, 172, 176, 178, 192, 208, 226, 232, 236, 250, 256, 262, 284, 292, 304, 316, 328, 332, 346, 352, 358, 368, 382, 388, 420, 428, 435
Offset: 1

Views

Author

Michel Lagneau, Aug 29 2011

Keywords

Examples

			The divisors of 28 are {1, 2, 4, 7, 14, 28} and the sum of its nonprime divisors is 1 + 4 + 14 + 28 = 47 is prime, hence 28 is in the sequence.
		

Crossrefs

Cf. A194594.

Programs

  • Maple
    with(numtheory): for n from 1 to 435 do x:=divisors(n): n1:=nops(x): s:=0: for k from 1 to n1 do if not isprime(x[k]) then s:=s+x[k] fi od: if isprime(s) then printf(`%d, `, n) fi od:
  • Mathematica
    f[n_] := Plus @@ Select[Divisors[n], ! PrimeQ[#] &]; Select[Range[435], PrimeQ[f[#]] &] (* T. D. Noe, Aug 29 2011 *)
  • PARI
    isok(n) = isprime(sumdiv(n, d, if (!isprime(d), d))); \\ Michel Marcus, Jan 07 2020

A358704 Numbers m such that the sum of the prime divisors and the sum of the nonprime divisors of m^2+1 are both prime.

Original entry on oeis.org

3, 9, 172, 309, 327, 392, 473, 483, 557, 578, 633, 657, 693, 699, 747, 767, 819, 820, 829, 909, 911, 1007, 1013, 1028, 1030, 1057, 1084, 1141, 1157, 1186, 1252, 1308, 1311, 1382, 1577, 1585, 1620, 1682, 1721, 1722, 1727, 1749, 1841, 1849, 1874, 1972, 2019, 2134
Offset: 1

Views

Author

Michel Lagneau, Nov 27 2022

Keywords

Comments

The primes of the sequence are 3, 557, 829, 911, 1013, 1721, ...
The corresponding pairs (p, q) = (sum of prime divisors, sum of nonprime divisors) are (7, 11), (43, 83), (163, 36293), ...
There is a subsequence {b(n)} = {3, 9, 309, 699, 819, ...} such that q/p < 2 (see the following table).
Conjecture: when b(n) tends to infinity, q/p tends to 2.
+------+----------+----------+-------------+
| b(n) | p | q | q/p |
+------+----------+----------+-------------+
| 3 | 7 | 11 | 1.571428571 |
| 9 | 43 | 83 | 1.930232558 |
| 309 | 47743 | 95483 | 1.999937164 |
| 699 | 244303 | 488603 | 1.999987720 |
| 819 | 335383 | 670763 | 1.999991055 |
| 909 | 413143 | 826283 | 1.999992739 |
| 1311 | 859363 | 1718723 | 1.999996509 |
| 1749 | 1529503 | 3059003 | 1.999998039 |
| 3201 | 5123203 | 10246403 | 1.999999414 |
| 4809 | 11563243 | 23126483 | 1.999999741 |
............................................

Examples

			3 is in the sequence because the divisors of 3^2 + 1 = 10 are {1, 2, 5, 10} and 1 + 10 = 11 and 2 + 5 = 7 are prime numbers.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Plus@@Select[Divisors[n^2+1], !PrimeQ[#]&]; g[n_]:=Plus@@First/@FactorInteger[n^2+1]; Select[Range[2200], PrimeQ[f[#]&&PrimeQ[g[#]]]&]
  • PARI
    isok(m) = my(f=factor(m^2+1), sp=vecsum(f[, 1])); isprime(sp) && isprime(sigma(f)-sp); \\ Michel Marcus, Nov 28 2022
Showing 1-2 of 2 results.