cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194597 Digital roots of the nonzero hexagonal numbers.

Original entry on oeis.org

1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3
Offset: 1

Views

Author

Ant King, Aug 30 2011

Keywords

Comments

This is a periodic sequence with period 9 and cycle 1,6,6,1,9,3,1,3,9 - which are also the coefficients of x in the numerator of the generating function.
a(n) = A010888(A000384(n)). - Reinhard Zumkeller, Jan 09 2013

Examples

			The sixth nonzero hexagonal number is A000384(6)=66. As 6+6=12 and 1+2=3, this has digital root 3 and so a(6)=3.
		

Crossrefs

Programs

  • Haskell
    a194597 n = [1,6,6,1,9,3,1,3,9] !! a010878 (n-1)
    -- Reinhard Zumkeller, Jan 09 2013
    
  • Magma
    &cat[ [1,6,6,1,9,3,1,3,9]: k in [1..10] ]; // Vincenzo Librandi, Aug 11 2015
  • Mathematica
    DigitalRoot[n_]:=FixedPoint[Plus@@IntegerDigits[#]&,n];DigitalRoot[ # (2#-1)]&/@Range[63]
    CoefficientList[Series[(1 + 6 x + 6 x^2 + x^3 + 9 x^4 + 3 x^5 + x^6 + 3 x^7 + 9 x^8)/((1 - x) (1 + x + x^2) (1 + x^3 + x^6)), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 11 2015 *)
    PadRight[{},120,{1,6,6,1,9,3,1,3,9}] (* Harvey P. Dale, Oct 02 2018 *)

Formula

a(n) = a(n-9), and as the sum of the terms contained in each cycle is 39 they also satisfy the eighth-order inhomogeneous recurrence a(n) = 39 - a(n-1) - a(n-2) - a(n-3) - a(n-4) - a(n-5) - a(n-6) - a(n-7) - a(n-8).
a(n) = 2 + cos(2/9*(n-5)*Pi) + cos(4/9*(n-5)*Pi) + cos(2/3*(n-5)*Pi) + cos(8/9*(n-5)*Pi) + cos(4/3*(n-5)*Pi) + cos(14/9*(n-5)*Pi) + cos(16/9*(n-5)*Pi) + cos((2 n Pi)/9) + cos((4 n Pi)/9) + cos((2 n Pi)/3) + cos((8 n Pi)/9) + cos((10 n Pi)/9) + cos((4 n Pi)/3) + cos((14 n Pi)/9) + cos((16 n Pi)/9) + cos(2/9 (2+5 n) Pi) + (8n + 5n^2 + 7n^3 + n^5 + n^7 + 6n^8) mod 9.
G.f.: x(1+6x+6x^2+x^3+9x^4+3x^5+x^6+3x^7+9x^8)/((1-x)(1+x+x^2)(1+x^3+x^6)).