A194597 Digital roots of the nonzero hexagonal numbers.
1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3
Offset: 1
Examples
The sixth nonzero hexagonal number is A000384(6)=66. As 6+6=12 and 1+2=3, this has digital root 3 and so a(6)=3.
Programs
-
Haskell
a194597 n = [1,6,6,1,9,3,1,3,9] !! a010878 (n-1) -- Reinhard Zumkeller, Jan 09 2013
-
Magma
&cat[ [1,6,6,1,9,3,1,3,9]: k in [1..10] ]; // Vincenzo Librandi, Aug 11 2015
-
Mathematica
DigitalRoot[n_]:=FixedPoint[Plus@@IntegerDigits[#]&,n];DigitalRoot[ # (2#-1)]&/@Range[63] CoefficientList[Series[(1 + 6 x + 6 x^2 + x^3 + 9 x^4 + 3 x^5 + x^6 + 3 x^7 + 9 x^8)/((1 - x) (1 + x + x^2) (1 + x^3 + x^6)), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 11 2015 *) PadRight[{},120,{1,6,6,1,9,3,1,3,9}] (* Harvey P. Dale, Oct 02 2018 *)
Formula
a(n) = a(n-9), and as the sum of the terms contained in each cycle is 39 they also satisfy the eighth-order inhomogeneous recurrence a(n) = 39 - a(n-1) - a(n-2) - a(n-3) - a(n-4) - a(n-5) - a(n-6) - a(n-7) - a(n-8).
a(n) = 2 + cos(2/9*(n-5)*Pi) + cos(4/9*(n-5)*Pi) + cos(2/3*(n-5)*Pi) + cos(8/9*(n-5)*Pi) + cos(4/3*(n-5)*Pi) + cos(14/9*(n-5)*Pi) + cos(16/9*(n-5)*Pi) + cos((2 n Pi)/9) + cos((4 n Pi)/9) + cos((2 n Pi)/3) + cos((8 n Pi)/9) + cos((10 n Pi)/9) + cos((4 n Pi)/3) + cos((14 n Pi)/9) + cos((16 n Pi)/9) + cos(2/9 (2+5 n) Pi) + (8n + 5n^2 + 7n^3 + n^5 + n^7 + 6n^8) mod 9.
G.f.: x(1+6x+6x^2+x^3+9x^4+3x^5+x^6+3x^7+9x^8)/((1-x)(1+x+x^2)(1+x^3+x^6)).
Comments