A195270 3-gap primes: Prime p is a term iff there is no prime between 3*p and 3*q, where q is the next prime after p.
71, 107, 137, 281, 347, 379, 443, 461, 557, 617, 641, 727, 809, 827, 853, 857, 991, 1031, 1049, 1091, 1093, 1289, 1297, 1319, 1433, 1489, 1579, 1607, 1613, 1697, 1747, 1787, 1867, 1871, 1877, 1931, 1987, 1997, 2027, 2237, 2269, 2309, 2377, 2381, 2473, 2591
Offset: 1
Keywords
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= p -> isprime(p) and nextprime(3*p)>3*nextprime(p): select(filter, [2,seq(2*i+1,i=1..2000)]); # Robert Israel, Jun 29 2015
-
Mathematica
pQ[p_, r_] := Block[{q = NextPrime@ p}, Union@ PrimeQ@ Range[r*p, r*q] == {False}]; Select[ Prime@ Range@ 380, pQ[#, 3] &] (* Robert G. Wilson v, Sep 18 2011 *) k = 3; p = 71; Reap[Do[While[NextPrime[k*p] < k*(q = NextPrime[p]), p = q]; Sow[p]; p = q, {1000}]][[2, 1]] (* for first 1000 terms. - Zak Seidov, Jun 29 2015 *) Prime/@SequencePosition[PrimePi[3*Prime[Range[400]]],{x_,x_}][[;;,1]] (* Harvey P. Dale, Nov 29 2023 *)
Comments