A194715 15 times triangular numbers.
0, 15, 45, 90, 150, 225, 315, 420, 540, 675, 825, 990, 1170, 1365, 1575, 1800, 2040, 2295, 2565, 2850, 3150, 3465, 3795, 4140, 4500, 4875, 5265, 5670, 6090, 6525, 6975, 7440, 7920, 8415, 8925, 9450, 9990, 10545, 11115, 11700, 12300, 12915, 13545, 14190, 14850, 15525
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[15*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, Oct 04 2011
-
Maple
A194715:=n->15*n*(n+1)/2: seq(A194715(n), n=0..60); # Wesley Ivan Hurt, Dec 23 2015
-
Mathematica
15*Accumulate[Range[0, 60]] (* Harvey P. Dale, Feb 12 2012 *) Table[15 n (n + 1)/2, {n, 0, 60}] (* Wesley Ivan Hurt, Dec 23 2015 *) 15 Binomial[Range[20], 2] (* Eric W. Weisstein, Jul 28 2017 *) 15 PolygonalNumber[Range[0, 20]] (* Eric W. Weisstein, Jul 28 2017 *)
-
PARI
a(n)=15*n*(n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
From Wesley Ivan Hurt, Dec 23 2015: (Start)
G.f.: 15*x/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = Sum_{i=7*n..8*n} i. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Sum_{n>=1} 1/a(n) = 2/15.
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*log(2) - 2)/15.
Product_{n>=1} (1 - 1/a(n)) = -(15/(2*Pi))*cos(sqrt(23/15)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (15/(2*Pi))*cos(sqrt(7/15)*Pi/2). (End)
E.g.f.: 15*exp(x)*x*(2 + x)/2. - Elmo R. Oliveira, Dec 25 2024
Comments