cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A138121 Triangle read by rows in which row n lists the partitions of n that do not contain 1 as a part in juxtaposed reverse-lexicographical order followed by A000041(n-1) 1's.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 2, 2, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 4, 5, 3, 6, 2, 3, 3, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 5, 4, 6, 3, 3, 3, 3, 7, 2, 4, 3, 2, 5, 2, 2, 3, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Mar 21 2008

Keywords

Comments

Mirror of triangle A135010.

Examples

			Triangle begins:
[1];
[2],[1];
[3],[1],[1];
[4],[2,2],[1],[1],[1];
[5],[3,2],[1],[1],[1],[1],[1];
[6],[3,3],[4,2],[2,2,2],[1],[1],[1],[1],[1],[1],[1];
[7],[4,3],[5,2],[3,2,2],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1];
...
The illustration of the three views of the section model of partitions (version "tree" with seven sections) shows the connection between several sequences.
---------------------------------------------------------
Partitions                A194805            Table 1.0
.  of 7       p(n)        A194551             A135010
---------------------------------------------------------
7              15                    7     7 . . . . . .
4+3                                4       4 . . . 3 . .
5+2                              5         5 . . . . 2 .
3+2+2                          3           3 . . 2 . 2 .
6+1            11    6       1             6 . . . . . 1
3+3+1                  3     1             3 . . 3 . . 1
4+2+1                    4   1             4 . . . 2 . 1
2+2+2+1                    2 1             2 . 2 . 2 . 1
5+1+1           7            1   5         5 . . . . 1 1
3+2+1+1                      1 3           3 . . 2 . 1 1
4+1+1+1         5        4   1             4 . . . 1 1 1
2+2+1+1+1                  2 1             2 . 2 . 1 1 1
3+1+1+1+1       3            1 3           3 . . 1 1 1 1
2+1+1+1+1+1     2          2 1             2 . 1 1 1 1 1
1+1+1+1+1+1+1   1            1             1 1 1 1 1 1 1
.               1                         ---------------
.               *<------- A000041 -------> 1 1 2 3 5 7 11
.                         A182712 ------->   1 0 2 1 4 3
.                         A182713 ------->     1 0 1 2 2
.                         A182714 ------->       1 0 1 1
.                                                  1 0 1
.                         A141285           A182703  1 0
.                    A182730   A182731                 1
---------------------------------------------------------
.                              A138137 --> 1 2 3 6 9 15..
---------------------------------------------------------
.       A182746 <--- 4 . 2 1 0 1 2 . 4 ---> A182747
---------------------------------------------------------
.
.       A182732 <--- 6 3 4 2 1 3 5 4 7 ---> A182733
.                    . . . . 1 . . . .
.                    . . . 2 1 . . . .
.                    . 3 . . 1 2 . . .
.      Table 2.0     . . 2 2 1 . . 3 .     Table 2.1
.                    . . . . 1 2 2 . .
.                            1 . . . .
.
.  A182982  A182742       A194803       A182983  A182743
.  A182992  A182994       A194804       A182993  A182995
---------------------------------------------------------
.
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6. Note that before the dissection the set of partitions was in the ordering mentioned in A026792. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
Illustration of initial terms:
---------------------------------------
n  j     Diagram          Parts
---------------------------------------
.         _
1  1     |_|              1;
.         _ _
2  1     |_  |            2,
2  2       |_|            .  1;
.         _ _ _
3  1     |_ _  |          3,
3  2         | |          .  1,
3  3         |_|          .  .  1;
.         _ _ _ _
4  1     |_ _    |        4,
4  2     |_ _|_  |        2, 2,
4  3           | |        .  1,
4  4           | |        .  .  1,
4  5           |_|        .  .  .  1;
.         _ _ _ _ _
5  1     |_ _ _    |      5,
5  2     |_ _ _|_  |      3, 2,
5  3             | |      .  1,
5  4             | |      .  .  1,
5  5             | |      .  .  1,
5  6             | |      .  .  .  1,
5  7             |_|      .  .  .  .  1;
.         _ _ _ _ _ _
6  1     |_ _ _      |    6,
6  2     |_ _ _|_    |    3, 3,
6  3     |_ _    |   |    4, 2,
6  4     |_ _|_ _|_  |    2, 2, 2,
6  5               | |    .  1,
6  6               | |    .  .  1,
6  7               | |    .  .  1,
6  8               | |    .  .  .  1,
6  9               | |    .  .  .  1,
6  10              | |    .  .  .  .  1,
6  11              |_|    .  .  .  .  .  1;
...
(End)
		

Crossrefs

Row n has length A138137(n).
Rows sums give A138879.

Programs

  • Mathematica
    less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[Array[1 &, {PartitionsP[n - 1]}], Sort[Reverse /@ Select[IntegerPartitions[n], FreeQ[#, 1] &], less]] // Flatten // Reverse; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 15 2013 *)
    Table[Reverse/@Reverse@DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x]!=1]], x_ /; x==0, 2]~Join~ConstantArray[{1}, PartitionsP[n - 1]], {n, 1, 9}]  // Flatten (* Robert Price, May 11 2020 *)

A210979 Total area of the shadows of the three views of the version "Tree" of the shell model of partitions with n shells.

Original entry on oeis.org

0, 3, 8, 15, 27, 42, 69, 102, 155, 225, 327, 458, 652, 894, 1232, 1669, 2257, 2999, 3996, 5242, 6877, 8928, 11564, 14845, 19045, 24223, 30756, 38815, 48877, 61195, 76496, 95124, 118067, 145930, 179991, 221160, 271268, 331538, 404463, 491948, 597253
Offset: 0

Views

Author

Omar E. Pol, Apr 28 2012

Keywords

Comments

The physical model shows each part of a partition as an object, for example; a cube of side 1 which is labeled with the size of the part. Note that on the branches of the tree each column contains parts of the same size, as a periodic structure. For the large version of this model see A210980.

Examples

			For n = 7 the three views of the shell model of partitions version "tree" with seven shells looks like this:
.
.         A194805(7) = 25        A006128(7) = 54
.
.                        7       7
.                      4         4 3
.                    5           5 2
.                  3             3 2 2
.        6       1               6 1
.          3     1               3 3 1
.            4   1               4 2 1
.              2 1               2 2 2 1
.                1   5           5 1 1
.                1 3             3 2 1 1
.            4   1               4 1 1 1
.              2 1               2 2 1 1 1
.                1 3             3 1 1 1 1
.              2 1               2 1 1 1 1 1
.                1               1 1 1 1 1 1 1
-------------------------------------------------
.
.        6 3 4 2 1 3 5 4 7
.          3 2 2 1 2 2 3
.              2 1 2
.                1
.                1
.                1
.                1
.
.         A194803(7) = 23
.
The areas of the shadows of the three views are A006128(7) = 54, A194803(7) = 23 and A194805(7) = 25, therefore the total area of the three shadows is 54+23+25 = 102, so a(7) = 102.
		

Crossrefs

Formula

a(n) = A006128(n) + A194803(n) + A194805(n).

A210980 Total area of the shadows of the three views of the shell model of partitions, version "Tree", with n shells.

Original entry on oeis.org

0, 3, 10, 21, 42, 69, 123, 189, 304, 458, 693, 998, 1474, 2067, 2927, 4056, 5613, 7595, 10335, 13782, 18411, 24276, 31944, 41583, 54152, 69762, 89758, 114668, 146181, 185083, 234051, 294126, 368992, 460669, 573906, 711865, 881506, 1087023, 1338043
Offset: 0

Views

Author

Omar E. Pol, Apr 21 2012

Keywords

Comments

Each part is represented by a cuboid 1 X 1 X L where L is the size of the part.

Examples

			For n = 7 the shadows of the three views of the shell model of partitions version "tree" with seven shells looks like this:
.                                        |  Partitions
.    A194805(7) = 25    A066186(7) = 105 |  of 7
.                                        |
.                   1    * * * * * * 1   |  7
.                 2      * * * 1 * * 2   |  4+3
.               2        * * * * 1 * 2   |  5+2
.             3          * * 1 * 2 * 3   |  3+2+2
.   1       2            * * * * * 1 2   |  6+1
.     2     3            * * 1 * * 2 3   |  3+3+1
.       2   3            * * * 1 * 2 3   |  4+2+1
.         3 4            * 1 * 2 * 3 4   |  2+2+2+1
.           3   1        * * * * 1 2 3   |  5+1+1
.           4 2          * * 1 * 2 3 4   |  3+2+1+1
.       1   4            * * * 1 2 3 4   |  4+1+1+1
.         2 5            * 1 * 2 3 4 5   |  2+2+1+1+1
.           5 1          * * 1 2 3 4 5   |  3+1+1+1+1
.         1 6            * 1 2 3 4 5 6   |  2+1+1+1+1+1
.           7            1 2 3 4 5 6 7   |  1+1+1+1+1+1+1
.   ----------------------------------   |
.                                        |
.   * * * * 1 * * * *                    |
.   * * * 1 2 * * * *                    |
.   * 1 * * 2 1 * * *                    |
.   * * 1 2 2 * * 1 *                    |
.   * * * * 2 2 1 * *                    |
.   1 2 2 3 2 * * * *                    |
.           2 3 2 2 1                    |
.                                        |
.    A194804(7) = 59                     |
.
Note that, as a variant, in this case each part is labeled with its position in the partition.
The areas of the shadows of the three views are A066186(7) = 105, A194804(7) = 59 and A194805(7) = 25, therefore the total area of the three shadows is 105+59+25 = 189, so a(7) = 189.
		

Crossrefs

Formula

a(n) = A066186(n) + A194804(n) + A194805(n), n >= 1.

A194803 Number of parts that are visible in one of the three views of the shell model of partitions version "Tree" with n shells.

Original entry on oeis.org

0, 1, 3, 5, 8, 11, 17, 23, 33, 46, 64, 86, 121, 161, 217, 291, 388, 507, 671, 870, 1131, 1458, 1872, 2383, 3042, 3840, 4841, 6076, 7605, 9460, 11765, 14544, 17950, 22073, 27077, 33092, 40395, 49113, 59611, 72162, 87185, 105035, 126366
Offset: 0

Views

Author

Omar E. Pol, Jan 27 2012

Keywords

Comments

The physical model shows each part represented by an object, for example using a cube or a cuboid. In this case the small version of the model shows each part as a cube of side 1 which is labeled with the size of the part. On the same way the large version of the model shows each part as a cuboid of sides 1 x 1 x L where L is the size of the part. The cuboid is labeled with the level of the part. For the sum of parts see A194804. For more information about the shell model see A135010 and A194805.

Examples

			Illustration of one of the three views with seven shells:
1) Small version:
.
Level
1        A182732 <- 6 3 4 2 1 3 5 4 7 -> A182733
2                     3 2 2 1 2 2 3
3                         2 1 2
4                           1
5      Table 2.0            1            Table 2.1
6                           1
7                           1
.
.  A182742  A182982                   A182743  A182983
.  A182992  A182994                   A182993  A182995
.
2) Large version:
.
.                   . . . . 1 . . . .
.                   . . . 1 2 . . . .
.                   . 1 . . 2 1 . . .
.                   . . 1 2 2 . . 1 .
.                   . . . . 2 2 1 . .
.                   1 2 2 3 2 . . . .
.                           2 3 2 2 1
.
The large version shows the parts labeled with the level of the part where "the level of a part" is its position in the partition. In both versions there are 23 parts that are visible, so a(7) = 23. Also using the formula we have a(7) = 7+8+8 = 23.
		

Crossrefs

Formula

a(n) = n + A138135(n-1) + A138135(n), if n >= 2.

A194797 Imbalance of the sum of parts of all partitions of n.

Original entry on oeis.org

0, -2, 1, -7, 3, -21, 7, -49, 23, -97, 57, -195, 117, -359, 256, -624, 498, -1086, 909, -1831, 1634, -2986, 2833, -4847, 4728, -7700, 7798, -12026, 12537, -18633, 19745, -28479, 30723, -42955, 47100, -64284, 71136, -95228, 106402, -139718, 157327, -203495
Offset: 1

Views

Author

Omar E. Pol, Jan 31 2012

Keywords

Comments

Consider the three-dimensional structure of the shell model of partitions, version "tree" (see example). Note that only the parts > 1 produce the imbalance. The 1's are located in the central columns therefore they do not produce the imbalance. Note that every column contains exactly the same parts. For more information see A135010.

Examples

			For n = 6 the illustration of the three views of the shell model with 6 shells shows an imbalance (see below):
------------------------------------------------------
Partitions                Tree             Table 1.0
of 6.                    A194805            A135010
------------------------------------------------------
6                   6                     6 . . . . .
3+3                   3                   3 . . 3 . .
4+2                     4                 4 . . . 2 .
2+2+2                     2               2 . 2 . 2 .
5+1                         1   5         5 . . . . 1
3+2+1                       1 3           3 . . 2 . 1
4+1+1                   4   1             4 . . . 1 1
2+2+1+1                   2 1             2 . 2 . 1 1
3+1+1+1                     1 3           3 . . 1 1 1
2+1+1+1+1                 2 1             2 . 1 1 1 1
1+1+1+1+1+1                 1             1 1 1 1 1 1
------------------------------------------------------
.
.                   6 3 4 2 1 3 5
.     Table 2.0     . . . . 1 . .     Table 2.1
.      A182982      . . . 2 1 . .      A182983
.                   . 3 . . 1 2 .
.                   . . 2 2 1 . .
.                   . . . . 1
------------------------------------------------------
The sum of all parts > 1 on the left hand side is 34 and the sum of all parts > 1 on the right hand side is 13, so a(6) = -34 + 13 = -21. On the other hand for n = 6 the first n terms of A138880 are 0, 2, 3, 8, 10, 24 thus a(6) = 0-2+3-8+10-24 = -21.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= proc(n) option remember;
          n *(-1)^n *(numbpart(n-1)-numbpart(n)) +a(n-1)
        end: a(0):=0:
    seq(a(n), n=1..50); # Alois P. Heinz, Apr 04 2012
  • Mathematica
    a[n_] := Sum[(-1)^(k-1)*k*(PartitionsP[k] - PartitionsP[k-1]), {k, 1, n}]; Array[a, 50] (* Jean-François Alcover, Dec 09 2016 *)

Formula

a(n) = Sum_{k=1..n} (-1)^(k-1)*k*(p(k)-p(k-1)), where p(k) is the number of partitions of k.
a(n) = b(1)-b(2)+b(3)-b(4)+b(5)-b(6)...+-b(n), where b(n) = A138880(n).
a(n) ~ -(-1)^n * Pi * sqrt(2) * exp(Pi*sqrt(2*n/3)) / (48*sqrt(n)). - Vaclav Kotesovec, Oct 09 2018

A194804 Sum of parts that are visible in one of the three views of the shell model of partitions version "tree" with n shells.

Original entry on oeis.org

0, 1, 4, 8, 15, 23, 40, 59, 92, 137, 202, 285, 418, 577, 802, 1106, 1511, 2019, 2724, 3598, 4755, 6226, 8107, 10462, 13523, 17280, 22029, 27953, 35350, 44416, 55763, 69579, 86634, 107459, 132914, 163768, 201475, 246841, 301822, 368033, 447790, 543206
Offset: 0

Views

Author

Omar E. Pol, Jan 27 2012

Keywords

Comments

For the number of parts see A194803. For more information about the shell model see A135010 and A194805.

Examples

			Illustration of one of the three views with seven shells:
.
.        A182732 <- 6 3 4 2 1 3 5 4 7 -> A182733
.                   . . . . 1 . . . .
.                   . . . 2 1 . . . .
.      Table 2.0    . 3 . . 1 2 . . .    Table 2.1
.                   . . 2 2 1 . . 3 .
.                   . . . . 1 2 2 . .
.                           1 . . . .
.  A182742  A182982                   A182743  A182983
.  A182992  A182994                   A182993  A182995
.
The sum of parts that are visible is 1+1+1+1+1+1+1+2+2+2+2+2+2+2+3+3+3+3+4+4+5+6+7 = 59, so a(7) = 59. Using the formula we have a(7) = 7+24+28 = 59.
		

Crossrefs

Formula

a(n) = n + A138880(n-1) + A138880(n), if n >= 2.

A194795 Imbalance of the number of partitions of n.

Original entry on oeis.org

0, -1, 0, -2, 0, -4, 0, -7, 1, -11, 3, -18, 6, -28, 13, -42, 24, -64, 41, -96, 69, -141, 112, -208, 175, -303, 271, -437, 410, -629, 609, -898, 896, -1271, 1302, -1792, 1868, -2510, 2660, -3493, 3752, -4839, 5248, -6666, 7293, -9131, 10065, -12454
Offset: 1

Views

Author

Omar E. Pol, Feb 02 2012

Keywords

Comments

Consider the three-dimensional structure of the shell model of partitions version "tree". Note that only the parts > 1 produce the imbalance. The 1's are located in the central columns. Note that every column contains exactly the same parts, the same as a periodic table (see example). For more information see A135010.

Examples

			For n = 6 the illustration of the three views of the shell model with 6 shells shows an imbalance (see below):
------------------------------------------------------
Partitions                Tree             Table 1.0
of 6.                    A194805            A135010
------------------------------------------------------
6                   6                     6 . . . . .
3+3                   3                   3 . . 3 . .
4+2                     4                 4 . . . 2 .
2+2+2                     2               2 . 2 . 2 .
5+1                         1   5         5 . . . . 1
3+2+1                       1 3           3 . . 2 . 1
4+1+1                   4   1             4 . . . 1 1
2+2+1+1                   2 1             2 . 2 . 1 1
3+1+1+1                     1 3           3 . . 1 1 1
2+1+1+1+1                 2 1             2 . 1 1 1 1
1+1+1+1+1+1                 1             1 1 1 1 1 1
------------------------------------------------------
.
.                   6 3 4 2 1 3 5
.     Table 2.0     . . . . 1 . .     Table 2.1
.      A182982      . . . 2 1 . .      A182983
.                   . 3 . . 1 2 .
.                   . . 2 2 1 . .
.                   . . . . 1
------------------------------------------------------
The number of partitions with parts on the left hand side is equal to 7 and the number of partitions with parts on the right hand side is equal to 3, so a(6) = -7+3 = -4. On the other hand; for n = 6 the first n terms of A002865 (with positive indices) are 0, 1, 1, 2, 2, 4 therefore a(6) = 0-1+1-2+2-4 = -4.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= proc(n) option remember;
          (-1)^n *(numbpart(n-1)-numbpart(n)) +`if`(n>1, a(n-1), 0)
        end:
    seq(a(n), n=1..70); # Alois P. Heinz, Apr 09 2012
  • Mathematica
    a[n_] := a[n] = (-1)^n*(PartitionsP[n-1]-PartitionsP[n]) + If[n>1, a[n-1], 0]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
    nmax = 60; Rest[CoefficientList[Series[x/(1-x) - (1+x)/(1-x) * Product[1/((1 + x^(2*k-1))*(1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 11 2015 *)
    nmax = 60; Rest[CoefficientList[Series[-x/(1+x) - (1-x)/(1+x) * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 11 2015 *)

Formula

a(n) = Sum_{k=1..n} (-1)^(k-1)*(p(k)-p(k-1)), where p(k) is the number of partitions of k.
a(n) = Sum_{k=1..n} (-1)^(k-1)*A002865(k).
a(n) = (-1)^(n+1) * (A240690(n+1) - A240690(n)) - 1. - Vaclav Kotesovec, Nov 11 2015
a(n) ~ (-1)^(n+1) * Pi * exp(Pi*sqrt(2*n/3)) / (24*sqrt(2)*n^(3/2)). - Vaclav Kotesovec, Nov 11 2015

A194809 Imbalance of the sum of largest parts of all partitions of n.

Original entry on oeis.org

0, -2, 1, -5, 3, -12, 7, -25, 17, -47, 36, -88, 69, -155, 133, -262, 240, -439, 415, -717, 705, -1142, 1165, -1803, 1874, -2797, 2975, -4276, 4632, -6478, 7094, -9698, 10741, -14355, 16059, -21079, 23719, -30670, 34716, -44243, 50315, -63372
Offset: 1

Views

Author

Omar E. Pol, Feb 02 2012

Keywords

Comments

Consider the three-dimensional structure of the shell model of partitions version "tree". Note that only the larges parts > 1 produce the imbalance. Note that every column where is located a largest part contains largest parts of the same size, thesame as a periodic table (see example). For more information see A135010.

Examples

			For n = 6 the illustration of the shell model with 6 shells shows an imbalance of largest parts (see below):
------------------------------------------------------
Partitions                Tree             Table 1.0
of 6.                    A194805            A135010
------------------------------------------------------
6                   6                     6 . . . . .
3+3                   3                   3 . . 3 . .
4+2                     4                 4 . . . 2 .
2+2+2                     2               2 . 2 . 2 .
5+1                         1   5         5 . . . . 1
3+2+1                       1 3           3 . . 2 . 1
4+1+1                   4   1             4 . . . 1 1
2+2+1+1                   2 1             2 . 2 . 1 1
3+1+1+1                     1 3           3 . . 1 1 1
2+1+1+1+1                 2 1             2 . 1 1 1 1
1+1+1+1+1+1                 1             1 1 1 1 1 1
------------------------------------------------------
The sum of largest parts > 1 on the left hand side is 23 and the sum of largest parts > 1 on the right hand side is 11, so a(6) = -23 + 11 = -12. On the other hand for n = 6 we have that 0 together with the first n-1 terms > 1 of A138137 are 0, 2, 3, 6, 8, 15 so a(6) = 0-2+3-6+8-15 = -12.
		

Crossrefs

Formula

a(n) = Sum_{k=2..n} (-1)^(k-1)*A138137(k), n >= 2.

A210692 Number of parts that are visible in one of the three views of the shell model of partitions with n regions mentioned in A210991.

Original entry on oeis.org

1, 3, 6, 6, 11, 11, 18, 18, 18, 18, 29, 29, 29, 29, 44, 44, 44, 44, 44, 44, 44, 66, 66, 66, 66, 66, 66, 66, 66, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194
Offset: 1

Views

Author

Omar E. Pol, May 24 2012

Keywords

Comments

For the definition of "regions of n" see A206437.

Examples

			Written as a triangle begins:
1,
3,
6,
6, 11,
11,18,
18,18,18,29,
29,29,29,44,
44,44,44,44,44,44,66,
66,66,66,66,66,66,66,96,
96,96,96,96,96,96,96,96,96,96,96,138;
		

Crossrefs

Row j has length A187219(j). Right border gives A026905.

Formula

a(A000041(n)) = A026905(n).
Showing 1-9 of 9 results.