A194960 a(n) = floor((n+2)/3) + ((n-1) mod 3).
1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, 7, 6, 7, 8, 7, 8, 9, 8, 9, 10, 9, 10, 11, 10, 11, 12, 11, 12, 13, 12, 13, 14, 13, 14, 15, 14, 15, 16, 15, 16, 17, 16, 17, 18, 17, 18, 19, 18, 19, 20, 19, 20, 21, 20, 21, 22, 21, 22, 23, 22, 23, 24, 23, 24, 25, 24, 25, 26, 25, 26
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Programs
-
Magma
I:=[1,2,3,2]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..100]]; // Vincenzo Librandi, Dec 17 2013
-
Maple
A194960:=n->floor((n+2)/3)+((n-1) mod 3); seq(A194960(n), n=1..100); # Wesley Ivan Hurt, Dec 17 2013
-
Mathematica
(* First program *) p[n_]:= Floor[(n+2)/3] + Mod[n-1, 3] Table[p[n], {n, 1, 90}] (* A194960 *) g[1] = {1}; g[n_]:= Insert[g[n-1], n, p[n]] f[1] = g[1]; f[n_]:= Join[f[n-1], g[n]] f[20] (* A194961 *) row[n_]:= Position[f[30], n]; u = TableForm[Table[row[n], {n, 1, 5}]] v[n_, k_]:= Part[row[n], k]; w = Flatten[Table[v[k, n-k+1], {n, 1, 13}, {k, 1, n}]] (* A194962 *) q[n_]:= Position[w, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194963 *) (* Other programs *) CoefficientList[Series[(1 +x +x^2 -2 x^3)/((1+x+x^2) (1-x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Dec 17 2013 *) Table[(n+4 -2*ChebyshevU[2*n+4, 1/2])/3, {n,80}] (* G. C. Greubel, Oct 23 2022 *)
-
PARI
a(n)=(n+2)\3 + (n-1)%3 \\ Charles R Greathouse IV, Sep 02 2015
-
SageMath
[(n+4 - 2*chebyshev_U(2*n+4, 1/2))/3 for n in (1..80)] # G. C. Greubel, Oct 23 2022
Formula
From R. J. Mathar, Sep 07 2011: (Start)
a(n) = ((-1)^n*A130772(n) + n + 4)/3.
G.f.: x*(1 + x + x^2 - 2*x^3)/((1+x+x^2)*(1-x)^2). (End)
a(n) = a(n-1) + a(n-3) - a(n-4). - Vincenzo Librandi, Dec 17 2013
a(n) = a(n-3) + 1, n >= 1, with input a(-2) = 0, a(-1) = 1 and a(0) = 2. Proof trivial. a(n) = A008611(n+3), n >= -2. See the first comment above. - Wolfdieter Lang, May 06 2017
From Guenther Schrack, Nov 09 2020: (Start)
a(n) = n - 2*floor((n-1)/3).
a(n) = (n + 2 + 2*((n-1) mod 3))/3.
a(n) = (3*n + 12 + 2*(w^(2*n)*(1 - w) + w^n*(2 + w)))/9, where w = (-1 + sqrt(-3))/2.
a(n) = (n + 4 + 2*A049347(n))/3.
a(n) = (2*n + 3 - A330396(n-1))/3. (End)
a(n) = (n + 4 - 2*A010892(2*n+4))/3. - G. C. Greubel, Oct 23 2022
Comments