A195026 a(n) = 7*n*(2*n + 1).
0, 21, 70, 147, 252, 385, 546, 735, 952, 1197, 1470, 1771, 2100, 2457, 2842, 3255, 3696, 4165, 4662, 5187, 5740, 6321, 6930, 7567, 8232, 8925, 9646, 10395, 11172, 11977, 12810, 13671, 14560, 15477, 16422, 17395, 18396, 19425, 20482, 21567, 22680, 23821, 24990
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[14*n^2 +7*n: n in [0..50]]; // Vincenzo Librandi, Oct 14 2011
-
Maple
A195026:=n->7*n*(2*n+1): seq(A195026(n), n=0..50); # Wesley Ivan Hurt, Dec 23 2015
-
Mathematica
Table[7*n*(2*n + 1), {n, 0, 50}] (* Wesley Ivan Hurt, Dec 23 2015 *) LinearRecurrence[{3,-3,1},{0,21,70},50] (* Harvey P. Dale, Apr 26 2017 *)
-
PARI
a(n)=7*n*(2*n+1) \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 14*n^2 + 7*n.
a(n) = 7*A014105(n). - Bruno Berselli, Oct 13 2011
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 7*x*(3+x)/(1-x)^3. (End)
a(n) = Sum_{i=6*n..8*n} i. - Wesley Ivan Hurt, Dec 23 2015
E.g.f.: 7*exp(x)*x*(3 + 2*x). - Elmo R. Oliveira, Dec 29 2024
Comments