A195034 Vertex number of a square spiral in which the length of the first two edges are the legs of the primitive Pythagorean triple [21, 20, 29]. The edges of the spiral have length A195033.
0, 21, 41, 83, 123, 186, 246, 330, 410, 515, 615, 741, 861, 1008, 1148, 1316, 1476, 1665, 1845, 2055, 2255, 2486, 2706, 2958, 3198, 3471, 3731, 4025, 4305, 4620, 4920, 5256, 5576, 5933, 6273, 6651, 7011, 7410, 7790, 8210, 8610, 9051, 9471
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Ron Knott, Pythagorean triangles and Triples
- Eric Weisstein's World of Mathematics, Pythagorean Triple
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
[(2*n*(41*n+83)-(2*n+43)*(-1)^n+43)/16: n in [0..50]]; // Vincenzo Librandi, Oct 14 2011
-
Mathematica
LinearRecurrence[{1,2,-2,-1,1},{0,21,41,83,123},50] (* Harvey P. Dale, May 02 2012 *)
-
PARI
concat(0, Vec(x*(21+20*x)/((1+x)^2*(1-x)^3) + O(x^60))) \\ Michel Marcus, Mar 08 2016
Formula
From Bruno Berselli, Oct 12 2011: (Start)
G.f.: x*(21+20*x)/((1+x)^2*(1-x)^3).
a(n) = (2*n*(41*n+83)-(2*n+43)*(-1)^n+43)/16.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5).
a(n)-a(-n-2) = A142150(n+1). (End)
Comments