A195140 Multiples of 5 and odd numbers interleaved.
0, 1, 5, 3, 10, 5, 15, 7, 20, 9, 25, 11, 30, 13, 35, 15, 40, 17, 45, 19, 50, 21, 55, 23, 60, 25, 65, 27, 70, 29, 75, 31, 80, 33, 85, 35, 90, 37, 95, 39, 100, 41, 105, 43, 110, 45, 115, 47, 120, 49, 125, 51, 130, 53, 135, 55, 140, 57, 145, 59, 150, 61, 155, 63
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Crossrefs
Programs
-
Magma
&cat[[5*n,2*n+1]: n in [0..31]]; // Bruno Berselli, Sep 27 2011
-
Mathematica
With[{nn=40},Riffle[5*Range[0,nn],Range[1,2nn+1,2]]] (* or *) LinearRecurrence[ {0,2,0,-1},{0,1,5,3},80] (* Harvey P. Dale, Dec 15 2014 *)
-
PARI
a(n)=(7+3*(-1)^n)*n/4 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(2n) = 5n, a(2n+1) = 2n+1.
G.f.: x*(1+5*x+x^2) / ((x-1)^2*(x+1)^2). - Alois P. Heinz, Sep 26 2011
From Bruno Berselli, Sep 27 2011: (Start)
a(n) = (7+3*(-1)^n)*n/4.
a(n) = -a(-n) = a(n-2)*n/(n-2) = 2*a(n-2)-a(n-4).
a(n) + a(n-1) = A047336(n). (End)
Multiplicative with a(2^e) = 5*2^(e-1), a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
Dirichlet g.f.: zeta(s-1) * (1 + 3/2^s). - Amiram Eldar, Oct 25 2023
Extensions
Corrected and edited by Alois P. Heinz, Sep 25 2011
Comments