cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195140 Multiples of 5 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 5, 3, 10, 5, 15, 7, 20, 9, 25, 11, 30, 13, 35, 15, 40, 17, 45, 19, 50, 21, 55, 23, 60, 25, 65, 27, 70, 29, 75, 31, 80, 33, 85, 35, 90, 37, 95, 39, 100, 41, 105, 43, 110, 45, 115, 47, 120, 49, 125, 51, 130, 53, 135, 55, 140, 57, 145, 59, 150, 61, 155, 63
Offset: 0

Views

Author

Omar E. Pol, Sep 10 2011

Keywords

Comments

This is 5*n/2 if n is even, n if n is odd.
Partial sums give the generalized enneagonal numbers A118277.
a(n) is also the length of the n-th line segment of a rectangular spiral on the infinite square grid. The vertices of the spiral are the generalized enneagonal numbers. - Omar E. Pol, Jul 27 2018

Crossrefs

A008587 and A005408 interleaved.
Column 5 of A195151.
Cf. Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, this sequence, zero together with A165998, A195159, A195161, A195312.

Programs

  • Magma
    &cat[[5*n,2*n+1]: n in [0..31]]; // Bruno Berselli, Sep 27 2011
    
  • Mathematica
    With[{nn=40},Riffle[5*Range[0,nn],Range[1,2nn+1,2]]] (* or *) LinearRecurrence[ {0,2,0,-1},{0,1,5,3},80] (* Harvey P. Dale, Dec 15 2014 *)
  • PARI
    a(n)=(7+3*(-1)^n)*n/4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(2n) = 5n, a(2n+1) = 2n+1.
G.f.: x*(1+5*x+x^2) / ((x-1)^2*(x+1)^2). - Alois P. Heinz, Sep 26 2011
From Bruno Berselli, Sep 27 2011: (Start)
a(n) = (7+3*(-1)^n)*n/4.
a(n) = -a(-n) = a(n-2)*n/(n-2) = 2*a(n-2)-a(n-4).
a(n) + a(n-1) = A047336(n). (End)
Multiplicative with a(2^e) = 5*2^(e-1), a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
Dirichlet g.f.: zeta(s-1) * (1 + 3/2^s). - Amiram Eldar, Oct 25 2023

Extensions

Corrected and edited by Alois P. Heinz, Sep 25 2011