cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195160 Generalized 11-gonal (or hendecagonal) numbers: m*(9*m - 7)/2 with m = 0, 1, -1, 2, -2, 3, -3, ...

Original entry on oeis.org

0, 1, 8, 11, 25, 30, 51, 58, 86, 95, 130, 141, 183, 196, 245, 260, 316, 333, 396, 415, 485, 506, 583, 606, 690, 715, 806, 833, 931, 960, 1065, 1096, 1208, 1241, 1360, 1395, 1521, 1558, 1691, 1730, 1870, 1911, 2058, 2101, 2255, 2300, 2461, 2508, 2676
Offset: 0

Views

Author

Omar E. Pol, Sep 10 2011

Keywords

Comments

Exponents of q in the expansion of Product_{n >= 1} (1 - q^(9*n))*(1 + q^(9*n-1))*(1 + q^(9*n-8)) = 1 + q + q^8 + q^11 + q^25 + q^30 + .... - Peter Bala, Nov 21 2024

Crossrefs

Partial sums of A195159.
Column 7 of A195152.
Cf. A316672.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), this sequence (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    I:=[0, 1, 8, 11, 25]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Apr 09 2013
    
  • Mathematica
    CoefficientList[Series[x (1 + 7 x + x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Apr 09 2013 *)
  • PARI
    a(n)=(18*n*(n+1)+5*(2*n+1)*(-1)^n-5)/16 \\ Charles R Greathouse IV, Sep 24 2015

Formula

From Bruno Berselli, Sep 14 2011: (Start)
G.f.: x*(1+7*x+x^2)/((1+x)^2*(1-x)^3).
a(n) = (18*n*(n+1)+5*(2*n+1)*(-1)^n-5)/16.
a(2n) = A062728(n), a(2n-1) = A051682(n). (End)
Sum_{n>=1} 1/a(n) = 18/49 + 2*Pi*cot(2*Pi/9)/7. - Vaclav Kotesovec, Oct 05 2016