A195161 Multiples of 8 and odd numbers interleaved.
0, 1, 8, 3, 16, 5, 24, 7, 32, 9, 40, 11, 48, 13, 56, 15, 64, 17, 72, 19, 80, 21, 88, 23, 96, 25, 104, 27, 112, 29, 120, 31, 128, 33, 136, 35, 144, 37, 152, 39, 160, 41, 168, 43, 176, 45, 184, 47, 192, 49, 200, 51, 208, 53, 216, 55, 224, 57, 232, 59
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Crossrefs
Programs
-
Magma
&cat[[8*n, 2*n+1]: n in [0..30]]; // Vincenzo Librandi, Sep 27 2011
-
Maple
a := proc(n): (6*(-1)^n+10)*n/4 end: seq(a(n), n=0..59); # Johannes W. Meijer, Jul 03 2016
-
Mathematica
With[{nn=30},Riffle[8*Range[0,nn],2*Range[0,nn]+1]] (* or *) LinearRecurrence[{0,2,0,-1},{0,1,8,3},60] (* Harvey P. Dale, Nov 24 2013 *)
-
PARI
concat(0, Vec(x*(1+8*x+x^2)/((1-x)^2*(1+x)^2) + O(x^99))) \\ Altug Alkan, Jul 04 2016
Formula
a(2n) = 8n, a(2n+1) = 2n+1. [corrected by Omar E. Pol, Jul 26 2018]
a(n) = (6*(-1)^n+10)*n/4. - Vincenzo Librandi, Sep 27 2011
a(n) = 2*a(n-2)-a(n-4). G.f.: x*(1+8*x+x^2)/((1-x)^2*(1+x)^2). - Colin Barker, Aug 11 2012
From Ilya Gutkovskiy, Jul 03 2016: (Start)
a(m*2^k) = m*2^(k+2), k>0.
E.g.f.: x*(4*sinh(x) + cosh(x)).
Dirichlet g.f.: 2^(-s)*(2^s + 6)*zeta(s-1). (End)
Multiplicative with a(2^e) = 4*2^e, a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
a(n) = A144433(n-1) for n > 1. - Georg Fischer, Oct 14 2018
Comments