cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195161 Multiples of 8 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 8, 3, 16, 5, 24, 7, 32, 9, 40, 11, 48, 13, 56, 15, 64, 17, 72, 19, 80, 21, 88, 23, 96, 25, 104, 27, 112, 29, 120, 31, 128, 33, 136, 35, 144, 37, 152, 39, 160, 41, 168, 43, 176, 45, 184, 47, 192, 49, 200, 51, 208, 53, 216, 55, 224, 57, 232, 59
Offset: 0

Views

Author

Omar E. Pol, Sep 10 2011

Keywords

Comments

A008590 and A005408 interleaved. This is 8*n if n is even, n if n is odd, if n>=0.
Partial sums give the generalized 12-gonal (or dodecagonal) numbers A195162.
The moment generating function of p(x, m=2, n=1, mu=2) = 4*x*E(x, 2, 1), see A163931 and A274181, is given by M(a) = (- 4*log(1-a) - 4 * polylog(2, a))/a^2. The series expansion of M(a) leads to the sequence given above. - Johannes W. Meijer, Jul 03 2016
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 12-gonal numbers. - Omar E. Pol, Jul 27 2018

Crossrefs

Column 8 of A195151.
Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, A195140, zero together with A165998, A195159, this sequence, A195312.
Cf. A144433.

Programs

  • Magma
    &cat[[8*n, 2*n+1]: n in [0..30]]; // Vincenzo Librandi, Sep 27 2011
    
  • Maple
    a := proc(n): (6*(-1)^n+10)*n/4 end: seq(a(n), n=0..59); # Johannes W. Meijer, Jul 03 2016
  • Mathematica
    With[{nn=30},Riffle[8*Range[0,nn],2*Range[0,nn]+1]] (* or *) LinearRecurrence[{0,2,0,-1},{0,1,8,3},60] (* Harvey P. Dale, Nov 24 2013 *)
  • PARI
    concat(0, Vec(x*(1+8*x+x^2)/((1-x)^2*(1+x)^2) + O(x^99))) \\ Altug Alkan, Jul 04 2016

Formula

a(2n) = 8n, a(2n+1) = 2n+1. [corrected by Omar E. Pol, Jul 26 2018]
a(n) = (6*(-1)^n+10)*n/4. - Vincenzo Librandi, Sep 27 2011
a(n) = 2*a(n-2)-a(n-4). G.f.: x*(1+8*x+x^2)/((1-x)^2*(1+x)^2). - Colin Barker, Aug 11 2012
From Ilya Gutkovskiy, Jul 03 2016: (Start)
a(m*2^k) = m*2^(k+2), k>0.
E.g.f.: x*(4*sinh(x) + cosh(x)).
Dirichlet g.f.: 2^(-s)*(2^s + 6)*zeta(s-1). (End)
Multiplicative with a(2^e) = 4*2^e, a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
a(n) = A144433(n-1) for n > 1. - Georg Fischer, Oct 14 2018