A195199 Smallest multiple of n with more than twice as many divisors as n.
4, 12, 12, 24, 20, 36, 28, 48, 36, 60, 44, 120, 52, 84, 60, 96, 68, 144, 76, 120, 84, 132, 92, 240, 100, 156, 108, 168, 116, 180, 124, 192, 132, 204, 140, 360, 148, 228, 156, 240, 164, 252, 172, 264, 180, 276, 188, 480, 196, 300, 204, 312, 212, 432, 220, 336
Offset: 1
Keywords
Examples
a(4) must have more than 6 divisors because 4 has 3 divisors and 3*2=6. Therefore, it cannot be 16 because 16 has only 5 divisors.
Crossrefs
Cf. A000005.
Programs
-
Maple
A195199 := proc(n) for k from 2 do if numtheory[tau](k*n) > 2*numtheory[tau](n) then return k*n ; end if; end do: end proc: # R. J. Mathar, Oct 21 2011
-
Mathematica
Table[d = DivisorSigma[0, n]; m = 1; While[DivisorSigma[0, m*n] <= 2*d, m++]; m*n, {n, 100}] (* T. D. Noe, Oct 21 2011 *)
-
PARI
a(n) = my(m=n, d=numdiv(n)); while(numdiv(m)<=2*d, m+=n); m; \\ Michel Marcus, Jan 08 2022
-
Python
from sympy import divisor_count def a(n): dtarget, m = 2*divisor_count(n), 2*n while divisor_count(m) <= dtarget: m += n return m print([a(n) for n in range(1, 57)]) # Michael S. Branicky, Jan 08 2022
-
Python
from math import prod from itertools import count from collections import Counter from sympy import factorint def A195199(n): f = Counter(factorint(n)) d = prod(e+1 for e in f.values()) for m in count(2): if prod(e+1 for e in (f+Counter(factorint(m))).values()) > 2*d: return m*n # Chai Wah Wu, Feb 28 2022