cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195199 Smallest multiple of n with more than twice as many divisors as n.

Original entry on oeis.org

4, 12, 12, 24, 20, 36, 28, 48, 36, 60, 44, 120, 52, 84, 60, 96, 68, 144, 76, 120, 84, 132, 92, 240, 100, 156, 108, 168, 116, 180, 124, 192, 132, 204, 140, 360, 148, 228, 156, 240, 164, 252, 172, 264, 180, 276, 188, 480, 196, 300, 204, 312, 212, 432, 220, 336
Offset: 1

Views

Author

J. Lowell, Oct 12 2011

Keywords

Examples

			a(4) must have more than 6 divisors because 4 has 3 divisors and 3*2=6. Therefore, it cannot be 16 because 16 has only 5 divisors.
		

Crossrefs

Cf. A000005.

Programs

  • Maple
    A195199 := proc(n)
            for k from 2 do
                    if numtheory[tau](k*n) > 2*numtheory[tau](n) then
                            return k*n ;
                    end if;
            end do:
    end proc: # R. J. Mathar, Oct 21 2011
  • Mathematica
    Table[d = DivisorSigma[0, n]; m = 1; While[DivisorSigma[0, m*n] <= 2*d, m++]; m*n, {n, 100}] (* T. D. Noe, Oct 21 2011 *)
  • PARI
    a(n) = my(m=n, d=numdiv(n)); while(numdiv(m)<=2*d, m+=n); m; \\ Michel Marcus, Jan 08 2022
    
  • Python
    from sympy import divisor_count
    def a(n):
        dtarget, m = 2*divisor_count(n), 2*n
        while divisor_count(m) <= dtarget: m += n
        return m
    print([a(n) for n in range(1, 57)]) # Michael S. Branicky, Jan 08 2022
    
  • Python
    from math import prod
    from itertools import count
    from collections import Counter
    from sympy import factorint
    def A195199(n):
        f = Counter(factorint(n))
        d = prod(e+1 for e in f.values())
        for m in count(2):
            if prod(e+1 for e in (f+Counter(factorint(m))).values()) > 2*d:
                return m*n # Chai Wah Wu, Feb 28 2022

Formula

a(n) = Min_{A000005(k*n) > 2*A000005(n)} k*n.