A195321 a(n) = 18*n^2.
0, 18, 72, 162, 288, 450, 648, 882, 1152, 1458, 1800, 2178, 2592, 3042, 3528, 4050, 4608, 5202, 5832, 6498, 7200, 7938, 8712, 9522, 10368, 11250, 12168, 13122, 14112, 15138, 16200, 17298, 18432, 19602, 20808, 22050, 23328, 24642, 25992, 27378, 28800, 30258, 31752
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Craig Knecht, Hexagon tessellation.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[18*n^2:n in [0..40]]; // Vincenzo Librandi, Sep 20 2011
-
Maple
A195321:=n->18*n^2; seq(A195321(n), n=0..50); # Wesley Ivan Hurt, Jun 19 2014
-
Mathematica
18 Range[0, 50]^2 (* or *) CoefficientList[Series[18 x*(1 + x)/(1 - x)^3, {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 20 2014 *) LinearRecurrence[{3,-3,1},{0,18,72},50] (* Harvey P. Dale, Mar 26 2023 *)
-
PARI
a(n)=18*n^2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: 18*x*(1+x)/(1-x)^3. - Wesley Ivan Hurt, Jun 20 2014
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 18*x*(1 + x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments