cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195605 a(n) = (4*n*(n+2)+(-1)^n+1)/2 + 1.

Original entry on oeis.org

2, 7, 18, 31, 50, 71, 98, 127, 162, 199, 242, 287, 338, 391, 450, 511, 578, 647, 722, 799, 882, 967, 1058, 1151, 1250, 1351, 1458, 1567, 1682, 1799, 1922, 2047, 2178, 2311, 2450, 2591, 2738, 2887, 3042, 3199, 3362, 3527, 3698, 3871, 4050, 4231, 4418, 4607, 4802
Offset: 0

Views

Author

Bruno Berselli, Sep 21 2011 - based on remarks and sequences by Omar E. Pol

Keywords

Comments

Sequence found by reading the numbers in increasing order on the vertical line containing 2 of the square spiral whose vertices are the triangular numbers (A000217) - see Pol's comments in other sequences visible in this numerical spiral.
Also A077591 (without first term) and A157914 interleaved.

Crossrefs

Cf. A047621 (contains first differences), A016754 (contains the sum of any two consecutive terms).

Programs

  • Magma
    [(4*n*(n+2)+(-1)^n+3)/2: n in [0..48]];
    
  • Mathematica
    CoefficientList[Series[(2 + 3 x + 4 x^2 - x^3) / ((1 + x) (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
    LinearRecurrence[{2,0,-2,1},{2,7,18,31},50] (* Harvey P. Dale, Jan 21 2017 *)
  • PARI
    for(n=0, 48, print1((4*n*(n+2)+(-1)^n+3)/2", "));

Formula

G.f.: (2+3*x+4*x^2-x^3)/((1+x)*(1-x)^3).
a(n) = a(-n-2) = 2*a(n-1)-2*a(n-3)+a(n-4).
a(n) = A047524(A000982(n+1)).
Sum_{n>=0} 1/a(n) = 1/2 + Pi^2/16 - cot(Pi/(2*sqrt(2)))*Pi/(4*sqrt(2)). - Amiram Eldar, Mar 06 2023