A195696 Decimal expansion of arccos(sqrt(1/3)) and of arcsin(sqrt(2/3)) and arctan(sqrt(2)).
9, 5, 5, 3, 1, 6, 6, 1, 8, 1, 2, 4, 5, 0, 9, 2, 7, 8, 1, 6, 3, 8, 5, 7, 1, 0, 2, 5, 1, 5, 7, 5, 7, 7, 5, 4, 2, 4, 3, 4, 1, 4, 6, 9, 5, 0, 1, 0, 0, 0, 5, 4, 9, 0, 9, 5, 9, 6, 9, 8, 1, 2, 9, 3, 2, 1, 9, 1, 2, 0, 4, 5, 9, 0, 3, 9, 7, 6, 4, 5, 5, 3, 8, 7, 3, 9, 1, 6, 0, 2, 5, 8, 5, 6, 2, 8, 0, 7, 3, 4
Offset: 0
Examples
0.9553166181245092781638571025157577... (= 54.73561031... degrees).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- John H. Conway, Charles Radin, and Lorenzo Sadun, On Angles Whose Squared Trigonometric Functions are Rational, arXiv:math-ph/9812019, 1998. See also Discr. Computat. Geom. (1999) Vol. 22, 321-332.
- H. B. Dwight, Tables of Integrals and other Mathematical Data. 507.13, 507.22 in Inverse trigonometric functions. New York: Macmillan Publishing, p. 120, 1961.
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2022; p. 53.
- C. O. Horgan and J. G. Murphy, On an angle with magical properties, Notices Amer. Math. Soc., 69:1 (2022), 22-25.
- G. Jacob Martens, Rational right triangles and the Congruent Number Problem, arXiv:2112.09553 [math.GM], 2021, see section 2.6.2 The Trinity vectors, the magic angle, equation (34).
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Eric Weisstein's World of Mathematics, Dehn Invariant.
- Wikipedia, Tetrahedron
- Wikipedia, Magic angle
- Index entries for transcendental numbers
Programs
-
Magma
[Arccos(Sqrt(1/3))]; // G. C. Greubel, Nov 18 2017
-
Mathematica
RealDigits[ArcTan[Sqrt[2]],10,120][[1]] (* Harvey P. Dale, Dec 13 2014 *)
-
PARI
atan(sqrt(2)) \\ G. C. Greubel, Jul 05 2017
Formula
Equals i*log(sqrt(1/3) - i*sqrt(2/3)). - Andrea Pinos, Nov 03 2023
Comments