cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A050166 Triangle T(n,k) = M(2n,k,-1), with 0 <= k <= n, n >= 0, and array M is defined in A050144.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 1, 6, 14, 14, 1, 8, 27, 48, 42, 1, 10, 44, 110, 165, 132, 1, 12, 65, 208, 429, 572, 429, 1, 14, 90, 350, 910, 1638, 2002, 1430, 1, 16, 119, 544, 1700, 3808, 6188, 7072, 4862, 1, 18, 152, 798, 2907, 7752, 15504, 23256, 25194, 16796
Offset: 0

Views

Author

Keywords

Comments

Sometimes called Catalan's triangle, although this term is usually reserved for several other triangles!
T is a mirror image of the array in A039598.
Given (1) = row 0, then the sum of terms with alternating signs in row r of A050166 = (-1)^r * A000108(n); where A000108 = 1, 1, 2, 5, 14, 42, ...the Catalan numbers. - Herb Conn
The diagonals of this triangle are self-convolutions of the main diagonal A000108(n+1): 1, 2, 5, 14, 42, 132, 429, ... - Philippe Deléham, May 25 2005
The multiplicities of the eigenvalues of the middle cubes are related to this triangle. The middle cube in Q_3 has eigenvalues -2, -1, 1, 2 with multiplicities 1, 2, 2, 1. The middle cube in Q_5 has eigenvalues -3, -2, -1, 1, 2, 3 with multiplicities 1, 4, 5, 5, 4, 1. The middle cube in Q_7 has eigenvalues -4, -3, -2, -1, 1, 2, 3, 4 with multiplicities 1, 6, 14, 14, 14, 14, 6, 1, etc. - Ke Qiu, Apr 05 2019

Examples

			Triangle begins:
  1;
  1,  2;
  1,  4,  5;
  1,  6, 14, 14;
  1,  8, 27, 48, 42;
  ...
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • Y. Jiang, K. Qiu, R. Qiu, and J. Shen, On the spectrum of the middle-cube, Congressus Numerantium, 195 (2009), 195-204.
  • A. Nkwanta, Lattice paths and RNA secondary structures, in: Nathaniel Dean, African Americans in Mathematics, AMS and DIMACS, 1997, ISBN 978-0-8218-0678-4, pp. 137-147.

Crossrefs

Mirror image of A039598.

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> 2*(n-k+1)* Binomial(2*n+1, k)/(2*n-k+2) ))); # G. C. Greubel, Apr 05 2019
  • Magma
    [[2*(n-k+1)*Binomial(2*n+1,k)/(2*n-k+2): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 05 2019
    
  • Mathematica
    Table[2*Binomial[2n+1, k]*(n-k+1)/(2*n-k+2), {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 05 2019 *)
  • PARI
    {T(n,k) = 2*(n-k+1)*binomial(2*n+1,k)/(2*n-k+2)}; \\ G. C. Greubel, Apr 05 2019
    
  • Sage
    [[2*(n-k+1)*binomial(2*n+1,k)/(2*n-k+2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 05 2019
    

Formula

From Henry Bottomley, Sep 24 2001: (Start)
T(n, k) = C(2n+1, k)*2*(n-k+1)/(2n-k+2) = A039598(n, n-k)
T(n, k) = T(n-1, k) + 2*T(n-1, k-1) + T(n-1, k-2), with T(0, 0) = 1 and T(n, k) = 0 if n < 0 or n < k. (End)
Sum_{0<=k<=n} T(n,k)*x^k = A000012(n), A001700(n), A194723(n+1), A194724(n+1), A194725(n+1), A194726(n+1), A195727(n+1), A194728(n+1), A194729(n+1), A194730(n+1) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Nov 03 2011

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 14 2001

A295257 Expansion of e.g.f. cot(x)*(1 - sqrt(1 - 4*tan(x)))/2.

Original entry on oeis.org

1, 1, 4, 32, 368, 5656, 109024, 2533712, 68995328, 2155513216, 76014982144, 2987332904192, 129473128921088, 6135478762187776, 315609465774936064, 17515027337549545472, 1043104219010147483648, 66358462250378681614336, 4491141928841064201846784, 322219449242531127348887552
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 18 2017

Keywords

Crossrefs

Programs

  • Maple
    S:= series(cot(x)*(1 - sqrt(1 - 4*tan(x)))/2, x, 32):
    seq(n!*coeff(S,x,n),n=0..30); # Robert Israel, Nov 18 2017
  • Mathematica
    nmax = 19; CoefficientList[Series[Cot[x] (1 - Sqrt[1 - 4 Tan[x]])/2, {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 19; CoefficientList[Series[1/(1 + ContinuedFractionK[-Tan[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: 1/(1 - tan(x)/(1 - tan(x)/(1 - tan(x)/(1 - tan(x)/(1 - ...))))), a continued fraction.
a(n) ~ sqrt(17/2) * n^(n-1) / (exp(n) * (arctan(1/4))^(n-1/2)). - Vaclav Kotesovec, Nov 18 2017

A195628 Decimal expansion of arctan(4).

Original entry on oeis.org

1, 3, 2, 5, 8, 1, 7, 6, 6, 3, 6, 6, 8, 0, 3, 2, 4, 6, 5, 0, 5, 9, 2, 3, 9, 2, 1, 0, 4, 2, 8, 4, 7, 5, 6, 3, 1, 1, 8, 4, 4, 4, 0, 6, 0, 1, 3, 0, 6, 3, 6, 8, 8, 4, 3, 3, 6, 0, 0, 9, 6, 3, 8, 1, 4, 8, 6, 5, 5, 3, 0, 8, 3, 5, 5, 5, 4, 6, 2, 4, 0, 2, 7, 3, 9, 4, 8, 3, 2, 5, 5, 0, 0, 2, 3, 5, 6, 5, 4, 2
Offset: 1

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Examples

			arctan(4) = 1.3258176636680324650592392104284756311844406013...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(125)); Arctan(4); // G. C. Greubel, Apr 13 2023
    
  • Mathematica
    r = 4;
    N[ArcTan[r], 100]
    RealDigits[%]  (* A195628 *)
    N[ArcCot[r], 100]
    RealDigits[%]  (* A195727 *)
    N[ArcSec[r], 100]
    RealDigits[%]  (* A195731 *)
    N[ArcCsc[r], 100]
    RealDigits[%]  (* A195621 *)
  • PARI
    atan(4) \\ Charles R Greathouse IV, Nov 20 2024
  • SageMath
    numerical_approx( arctan(4), digits=125) # G. C. Greubel, Apr 13 2023
    

Formula

Equals arcsin(4/sqrt(17)) = arccos(1/sqrt(17)). - Amiram Eldar, Jul 11 2023

A344906 Decimal expansion of Sum_{k>=0} arctan(1/2^k).

Original entry on oeis.org

1, 7, 4, 3, 2, 8, 6, 6, 2, 0, 4, 7, 2, 3, 4, 0, 0, 0, 3, 5, 0, 4, 3, 3, 7, 6, 5, 6, 1, 3, 6, 4, 1, 6, 2, 8, 5, 8, 1, 3, 8, 3, 1, 1, 8, 5, 4, 2, 8, 2, 0, 6, 5, 2, 3, 0, 0, 4, 5, 6, 9, 5, 7, 2, 0, 5, 6, 5, 5, 1, 7, 6, 5, 2, 2, 7, 4, 9, 2, 0, 5, 5, 8, 1, 6, 5, 8, 6, 8
Offset: 1

Views

Author

Daniel Hoyt, Jun 01 2021

Keywords

Comments

This number can be interpreted geometrically as the angle in radians of a fan made of stacked right triangles, with the length to height ratio doubling each successive triangle as seen in the illustration.
Since this angle exceeds Pi/2, the set of rotation angles used in the CORDIC algorithm covers an angle range sufficient to compute sine and cosine for any angle between 0 and Pi/2. This means the algorithm can converge to any angle in that range through appropriate combinations of these basic rotations. - Daniel Hoyt, Oct 25 2024

Examples

			1.743286620472340003...
		

Crossrefs

Programs

  • Maple
    Digits:= 140:
    evalf(sum(arccot(2^k), k=0..infinity));  # Alois P. Heinz, Jun 02 2021
  • PARI
    suminf(k=0, atan(1/2^k))
    
  • PARI
    sumalt(k=1, ((-1)^(k+1))*2^(2*k-1)/((2^(2*k-1)-1)*(2*k-1)))

Formula

Equals Sum_{k>=1} (-1)^(k+1)*2^(2*k-1)/((2^(2*k-1)-1)*(2*k-1)).
Showing 1-4 of 4 results.