cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195820 Total number of smallest parts in all partitions of n that do not contain 1 as a part.

Original entry on oeis.org

0, 1, 1, 3, 2, 7, 5, 12, 13, 22, 22, 43, 43, 67, 81, 117, 133, 195, 223, 312, 373, 492, 584, 782, 925, 1190, 1433, 1820, 2170, 2748, 3268, 4075, 4872, 5997, 7150, 8781, 10420, 12669, 15055, 18198, 21535, 25925, 30602, 36624, 43201, 51428, 60478, 71802, 84215
Offset: 1

Views

Author

Omar E. Pol, Oct 19 2011

Keywords

Comments

Total number of smallest parts in all partitions of the head of the last section of the set of partitions of n.

Examples

			For n = 8 the seven partitions of 8 that do not contain 1 as a part are:
.  (8)
.  (4) + (4)
.   5  + (3)
.   6  + (2)
.   3  +  3  + (2)
.   4  + (2) + (2)
.  (2) + (2) + (2) + (2)
Note that in every partition the smallest parts are shown between parentheses. The total number of smallest parts is 1+2+1+1+1+2+4 = 12, so a(8) = 12.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0 or i<2, 0, b(n, i-1)+
           add(`if`(n=i*j, j, b(n-i*j, i-1)), j=1..n/i))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=1..60); # Alois P. Heinz, Apr 09 2012
  • Mathematica
    Table[s = Select[IntegerPartitions[n], ! MemberQ[#, 1] &]; Plus @@ Table[Count[x, Min[x]], {x, s}], {n, 50}] (* T. D. Noe, Oct 19 2011 *)
    b[n_, i_] := b[n, i] = If[n==0 || i<2, 0, b[n, i-1] + Sum[If[n== i*j, j, b[n-i*j, i-1]], {j, 1, n/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Oct 12 2015, after Alois P. Heinz *)
  • Sage
    def A195820(n):
        return sum(list(p).count(min(p)) for p in Partitions(n,min_part=2))
    # D. S. McNeil, Oct 19 2011

Formula

a(n) = A092269(n) - A000070(n-1).
G.f.: Sum_{i>=2} x^i/(1 - x^i) * Product_{j>=i} 1/(1 - x^j). - Ilya Gutkovskiy, Apr 03 2017
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n) * (1 - (72 + 5*Pi^2)*sqrt(6) / (144*Pi*sqrt(n))). - Vaclav Kotesovec, Jul 31 2017

Extensions

More terms from D. S. McNeil, Oct 19 2011