A195824 a(n) = 24*n^2.
0, 24, 96, 216, 384, 600, 864, 1176, 1536, 1944, 2400, 2904, 3456, 4056, 4704, 5400, 6144, 6936, 7776, 8664, 9600, 10584, 11616, 12696, 13824, 15000, 16224, 17496, 18816, 20184, 21600, 23064, 24576, 26136, 27744, 29400, 31104, 32856, 34656, 36504, 38400, 40344
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[24*n^2 : n in [0..50]]; // Wesley Ivan Hurt, Aug 05 2014
-
Magma
I:=[0,24,96]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 06 2014
-
Maple
A195824:=n->24*n^2: seq(A195824(n), n=0..50); # Wesley Ivan Hurt, Aug 05 2014
-
Mathematica
24 Range[0, 30]^2 (* or *) Table[24 n^2, {n, 0, 30}] (* or *) CoefficientList[Series[24 x (1 + x)/(1 - x)^3, {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 05 2014 *) LinearRecurrence[{3,-3,1},{0,24,96},40] (* Harvey P. Dale, Nov 11 2017 *)
-
PARI
a(n) = 24*n^2; \\ Michel Marcus, Aug 05 2014
Formula
a(n) = 24*A000290(n) = 12*A001105(n) = 8*A033428(n) = 6*A016742(n) = 4*A033581(n) = 3*A139098(n) = 2*A135453(n).
From Wesley Ivan Hurt, Aug 05 2014: (Start)
G.f.: 24*x*(1+x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 24*x*(1 + x)*exp(x).
Comments