A195971
Number of n X 1 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,0,1,3,4 for x=0,1,2,3,4.
Original entry on oeis.org
0, 1, 3, 4, 5, 9, 16, 25, 39, 64, 105, 169, 272, 441, 715, 1156, 1869, 3025, 4896, 7921, 12815, 20736, 33553, 54289, 87840, 142129, 229971, 372100, 602069, 974169, 1576240, 2550409, 4126647, 6677056, 10803705, 17480761, 28284464, 45765225
Offset: 0
All solutions for n=4:
0 0 1 1 0
0 0 0 0 1
0 0 0 0 1
1 0 1 0 0
-
a:=[1,3,4,5];; for n in [5..40] do a[n]:=a[n-1]+a[n-3]+a[n-4]; od; Concatenation([0], a); # G. C. Greubel, Apr 03 2019
-
R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x)^2/(1-x-x^3-x^4) )); // G. C. Greubel, Apr 03 2019
-
Table[(LucasL[n + 3] - 2 Sin[n Pi/2] - 4 Cos[n Pi/2])/5, {n, 0, 40}] (* Eric W. Weisstein, Apr 10 2018 *)
LinearRecurrence[{1, 0, 1, 1}, {0, 1, 3, 4, 5}, 40] (* Eric W. Weisstein, Apr 10 2018; amended for a(0) by Georg Fischer, Apr 03 2019 *)
CoefficientList[Series[x*(1+x)^2/(1-x-x^3-x^4), {x, 0, 40}], x] (* Eric W. Weisstein, Apr 10 2018 *)
-
my(x='x+O('x^40)); concat([0], Vec(x*(1+x)^2/(1-x-x^3-x^4))) \\ G. C. Greubel, Apr 03 2019
-
(x*(1+x)^2/(1-x-x^3-x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 03 2019
A195972
Number of n X 2 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,0,1,3,4 for x=0,1,2,3,4.
Original entry on oeis.org
3, 9, 14, 23, 43, 78, 139, 249, 450, 815, 1475, 2674, 4859, 8841, 16102, 29359, 53587, 97894, 178971, 327425, 599394, 1097871, 2011875, 3688402, 6764595, 12410585, 22775742, 41808791, 76765147, 140977582, 258949451, 475718009, 874068802
Offset: 1
Some solutions for n=4:
..0..1....2..1....1..1....1..0....0..1....1..0....1..2....0..1....0..0....0..1
..1..1....1..0....0..0....1..0....1..1....1..0....0..1....0..1....0..0....0..1
..1..0....1..0....0..0....1..0....1..0....1..1....0..1....1..1....0..0....0..1
..1..0....2..1....1..1....1..0....2..1....0..1....1..2....1..0....0..0....0..1
A195973
Number of n X 3 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,0,1,3,4 for x=0,1,2,3,4.
Original entry on oeis.org
4, 14, 24, 36, 67, 134, 240, 432, 803, 1501, 2764, 5118, 9519, 17718, 32927, 61310, 114257, 213023, 397223, 741197, 1383497, 2583168, 4824204, 9012010, 16838364, 31466993, 58813148, 109939804, 205534006, 384287357, 718564103, 1343717638
Offset: 1
Some solutions for n=4:
..0..1..2....1..0..0....0..0..1....0..0..1....1..1..0....1..0..1....1..0..0
..1..1..1....2..1..1....0..0..1....0..0..1....0..1..1....1..0..1....1..1..1
..1..0..0....2..1..1....0..0..1....1..1..1....1..1..1....1..0..1....0..1..1
..2..1..1....1..0..0....0..0..1....2..1..0....1..0..0....1..0..1....1..1..0
A195974
Number of n X 4 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,0,1,3,4 for x=0,1,2,3,4.
Original entry on oeis.org
5, 23, 36, 67, 133, 256, 455, 931, 1830, 3565, 7001, 13872, 27433, 54401, 108164, 215285, 428869, 855426, 1707759, 3411577, 6819860, 13640635, 27294311, 54635604, 109402661, 219127235, 438997334, 879659285, 1762952379, 3533677212
Offset: 1
Some solutions for n=5:
..2..1..0..1....2..1..1..2....2..1..1..0....2..1..0..1....0..1..1..1
..1..1..0..1....1..0..0..1....1..0..1..1....1..1..1..2....1..1..0..0
..0..1..1..1....2..1..1..2....1..0..1..1....0..0..1..2....1..1..1..1
..0..1..1..0....2..1..1..2....1..1..1..0....1..1..1..1....0..0..1..1
..0..1..1..0....1..0..0..1....0..1..1..0....2..1..0..0....1..1..1..0
A195975
Number of nX5 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,0,1,3,4 for x=0,1,2,3,4.
Original entry on oeis.org
9, 43, 67, 133, 244, 519, 1072, 2225, 4456, 9098, 19066, 39689, 82372, 171498, 358146, 748911, 1567225, 3279792, 6866722, 14390098, 30170057, 63261378, 132676528, 278340227, 584041659, 1225661652, 2572438981, 5399619168, 11334969352
Offset: 1
Some solutions for n=4
..1..2..2..1..2....0..0..1..1..0....0..1..1..1..2....1..1..1..0..0
..0..1..1..0..1....0..0..1..1..0....1..1..0..0..1....0..0..1..1..1
..1..1..1..0..1....1..1..1..1..0....1..1..1..1..1....1..1..1..1..1
..1..0..1..1..2....2..1..0..1..1....0..0..1..1..0....2..1..0..0..0
A195976
Number of nX6 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,0,1,3,4 for x=0,1,2,3,4.
Original entry on oeis.org
16, 78, 134, 256, 519, 1280, 2718, 5830, 12799, 28969, 64536, 144480, 323887, 730358, 1647281, 3720888, 8406355, 19026721, 43091379, 97668401, 221445855, 502417344, 1140305840, 2589100946, 5880051614, 13357939515, 30351874554, 68979138844
Offset: 1
Some solutions for n=4
..1..2..2..1..1..2....0..1..1..0..0..1....1..0..1..2..1..0....0..1..2..1..0..0
..0..1..1..0..0..1....0..1..1..0..0..1....1..1..2..2..1..1....0..1..2..1..0..0
..0..1..1..1..1..1....1..1..1..0..0..1....0..1..2..1..0..1....0..1..2..1..0..0
..1..1..0..1..1..0....1..0..1..1..1..2....0..1..2..1..0..1....0..1..2..1..0..0
A195977
Number of nX7 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,0,1,3,4 for x=0,1,2,3,4.
Original entry on oeis.org
25, 139, 240, 455, 1072, 2718, 5637, 12823, 30486, 72042, 166884, 390514, 917562, 2167323, 5114140, 12071815, 28523614, 67538866, 159964100, 378996636, 898240293, 2130429190, 5054033816, 11993264778, 28464315995, 67574829560
Offset: 1
Some solutions for n=4
..1..0..1..1..0..0..1....0..0..1..1..0..0..1....1..0..0..0..0..1..2
..2..1..2..2..1..1..1....0..0..1..1..0..0..1....2..1..1..1..1..1..1
..2..1..2..2..1..1..0....1..1..1..1..1..1..1....2..1..1..1..1..0..0
..1..0..1..1..0..1..1....2..1..0..0..1..1..0....1..0..0..0..1..1..1
A195970
Number of n X n 0..4 arrays with each element x equal to the number of its horizontal and vertical neighbors equal to 2,0,1,3,4 for x=0,1,2,3,4.
Original entry on oeis.org
1, 9, 24, 67, 244, 1280, 5637, 32909, 212185, 1609756, 13476199, 134461394
Offset: 1
Some solutions for n=4
..1..0..0..1....1..2..2..1....1..0..1..1....1..0..1..1....1..0..0..0
..1..0..0..1....0..1..1..0....1..1..1..0....2..1..1..0....2..1..1..1
..1..0..0..1....0..1..1..1....0..1..1..0....2..1..1..0....2..1..1..1
..1..0..0..1....1..1..0..1....0..1..1..0....1..0..1..1....1..0..0..0
Showing 1-8 of 8 results.
Comments