A196168 In binary representation of n: replace each 0 with 1, and each 1 with 10.
1, 2, 5, 10, 11, 22, 21, 42, 23, 46, 45, 90, 43, 86, 85, 170, 47, 94, 93, 186, 91, 182, 181, 362, 87, 174, 173, 346, 171, 342, 341, 682, 95, 190, 189, 378, 187, 374, 373, 746, 183, 366, 365, 730, 363, 726, 725, 1450, 175, 350, 349, 698, 347, 694, 693, 1386
Offset: 0
Keywords
Examples
n = 7 -> 111 -> 101010 -> a(7) = 42; n = 8 -> 1000 -> 10111 -> a(8) = 23; n = 9 -> 1001 -> 101110 -> a(9) = 46; n = 10 -> 1010 -> 101101 -> a(10) = 45; n = 11 -> 1011 -> 1011010 -> a(11) = 90; n = 12 -> 1100 -> 101011 -> a(12) = 43.
Links
Programs
-
Haskell
import Data.List (unfoldr) a196168 0 = 1 a196168 n = foldl (\v b -> (2 * v + 1)*(b + 1)) 0 $ reverse $ unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2) n where r v b = (2 * v + 1)*(b+1)
-
Mathematica
Table[FromDigits[Flatten[IntegerDigits[n,2]/.{{0->1,1->{1,0}}}],2],{n,0,120}] (* Harvey P. Dale, Dec 12 2017 *)
-
Python
def a(n): b = bin(n)[2:] return int(b.replace('1', 't').replace('0', '1').replace('t', '10'), 2) print([a(n) for n in range(56)]) # Michael S. Branicky, Oct 28 2021
Formula
n = Sum_{i=0..1} b(i)*2^i with 0 <= b(i) <= 1, L >= 0, then a(n) = h(0,L) with h(v,i) = if i > L then v, otherwise h((2*v+1)*(b(i)+1),i-1).
From Jeffrey Shallit, Oct 28 2021: (Start)
a(n) satisfies the recurrences:
a(2n+1) = 2*a(2n)
a(4n) = -2*a(n) + 3*a(2n)
a(8n+2) = -8*a(n) + 8*a(2n) + a(4n+2)
a(8n+6) = -4*a(2n) + 5*a(4n+2)
which shows that a(n) is a 2-regular sequence. (End)
Comments