cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003754 Numbers with no adjacent 0's in binary expansion.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 21, 22, 23, 26, 27, 29, 30, 31, 42, 43, 45, 46, 47, 53, 54, 55, 58, 59, 61, 62, 63, 85, 86, 87, 90, 91, 93, 94, 95, 106, 107, 109, 110, 111, 117, 118, 119, 122, 123, 125, 126, 127, 170, 171, 173, 174, 175, 181
Offset: 1

Views

Author

Keywords

Comments

Theorem (J.-P. Allouche, J. Shallit, G. Skordev): This sequence = A052499 - 1.
Ahnentafel numbers of ancestors contributing the X-chromosome to a female. A280873 gives the male inheritance. - Floris Strijbos, Jan 09 2017 [Equivalence with this sequence pointed out by John Blythe Dobson, May 09 2018]
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. This sequence lists all numbers k such that the k-th composition in standard order has no parts greater than two. See the corresponding example below. - Gus Wiseman, Apr 04 2020
The binary representation of a(n+1) has the same string of digits as the lazy Fibonacci (also known as dual Zeckendorf) representation of n that uses 0s and 1s. (The "+1" is essentially an adjustment for the offset of this sequence.) - Peter Munn, Sep 06 2022

Examples

			21 is in the sequence because 21 = 10101_2. '10101' has no '00' present in it. - _Indranil Ghosh_, Feb 11 2017
From _Gus Wiseman_, Apr 04 2020: (Start)
The terms together with the corresponding compositions begin:
    0: ()            30: (1,1,1,2)         90: (2,1,2,2)
    1: (1)           31: (1,1,1,1,1)       91: (2,1,2,1,1)
    2: (2)           42: (2,2,2)           93: (2,1,1,2,1)
    3: (1,1)         43: (2,2,1,1)         94: (2,1,1,1,2)
    5: (2,1)         45: (2,1,2,1)         95: (2,1,1,1,1,1)
    6: (1,2)         46: (2,1,1,2)        106: (1,2,2,2)
    7: (1,1,1)       47: (2,1,1,1,1)      107: (1,2,2,1,1)
   10: (2,2)         53: (1,2,2,1)        109: (1,2,1,2,1)
   11: (2,1,1)       54: (1,2,1,2)        110: (1,2,1,1,2)
   13: (1,2,1)       55: (1,2,1,1,1)      111: (1,2,1,1,1,1)
   14: (1,1,2)       58: (1,1,2,2)        117: (1,1,2,2,1)
   15: (1,1,1,1)     59: (1,1,2,1,1)      118: (1,1,2,1,2)
   21: (2,2,1)       61: (1,1,1,2,1)      119: (1,1,2,1,1,1)
   22: (2,1,2)       62: (1,1,1,1,2)      122: (1,1,1,2,2)
   23: (2,1,1,1)     63: (1,1,1,1,1,1)    123: (1,1,1,2,1,1)
   26: (1,2,2)       85: (2,2,2,1)        125: (1,1,1,1,2,1)
   27: (1,2,1,1)     86: (2,2,1,2)        126: (1,1,1,1,1,2)
   29: (1,1,2,1)     87: (2,2,1,1,1)      127: (1,1,1,1,1,1,1)
(End)
		

Crossrefs

A104326(n) = A007088(a(n)); A023416(a(n)) = A087116(a(n)); A107782(a(n)) = 0; A107345(a(n)) = 1; A107359(n) = a(n+1) - a(n); a(A001911(n)) = A000225(n); a(A000071(n+2)) = A000975(n). - Reinhard Zumkeller, May 25 2005
Cf. A003796 (no 000), A004745 (no 001), A004746 (no 010), A004744 (no 011), A004742 (no 101), A004743 (no 110), A003726 (no 111).
Complement of A004753.
Positions of numbers <= 2 in A333766 (see this and A066099 for other sequences about compositions in standard order).
Cf. A318928.

Programs

  • Haskell
    a003754 n = a003754_list !! (n-1)
    a003754_list = filter f [0..] where
       f x = x == 0 || x `mod` 4 > 0 && f (x `div` 2)
    -- Reinhard Zumkeller, Dec 07 2012, Oct 19 2011
    
  • Maple
    isA003754 := proc(n) local bdgs ; bdgs := convert(n,base,2) ; for i from 2 to nops(bdgs) do if op(i,bdgs)=0 and op(i-1,bdgs)= 0 then return false; end if; end do; return true; end proc:
    A003754 := proc(n) option remember; if n= 1 then 0; else for a from procname(n-1)+1 do if isA003754(a) then return a; end if; end do: end if; end proc:
    # R. J. Mathar, Oct 23 2010
  • Mathematica
    Select[ Range[0, 200], !MatchQ[ IntegerDigits[#, 2], {_, 0, 0, _}]&] (* Jean-François Alcover, Oct 25 2011 *)
    Select[Range[0,200],SequenceCount[IntegerDigits[#,2],{0,0}]==0&] (* The program uses the SequenceCount function from Mathematica version 10 *) (* Harvey P. Dale, May 21 2015 *)
  • PARI
    is(n)=n=bitor(n,n>>1)+1; n>>=valuation(n,2); n==1 \\ Charles R Greathouse IV, Feb 06 2017
    
  • Python
    i=0
    while i<=500:
        if "00" not in bin(i)[2:]:
            print(str(i), end=',')
        i+=1 # Indranil Ghosh, Feb 11 2017

Formula

Sum_{n>=2} 1/a(n) = 4.356588498070498826084131338899394678478395568880140707240875371925764128502... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022

Extensions

Removed "2" from the name, because, for example, one could argue that 10001 has 3 adjacent zeros, not 2. - Gus Wiseman, Apr 04 2020

A055010 a(0) = 0; for n > 0, a(n) = 3*2^(n-1) - 1.

Original entry on oeis.org

0, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471, 6442450943, 12884901887
Offset: 0

Views

Author

Henry Bottomley, May 31 2000

Keywords

Comments

Apart from leading term (which should really be 3/2), same as A083329.
Written in binary, a(n) is 1011111...1.
The sequence 2, 5, 11, 23, 47, 95, ... apparently gives values of n such that Nim-factorial(n) = 2. Cf. A059970. However, compare A060152. More work is needed! - John W. Layman, Mar 09 2001
With offset 1, number of (132,3412)-avoiding two-stack sortable permutations.
Number of descents after n+1 iterations of morphism A007413.
a(n) = A164874(n,1), n>0; subsequence of A030130. - Reinhard Zumkeller, Aug 29 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,-1). - Milan Janjic, Jan 24 2010
a(n) is the total number of records over all length n binary words. A record in a word a_1,a_2,...,a_n is a letter a_j that is larger than all the preceding letters. That is, a_j>a_i for all iGeoffrey Critzer, Jul 18 2020
Called Thabit numbers after the Syrian mathematician Thābit ibn Qurra (826 or 836 - 901). - Amiram Eldar, Jun 08 2021
a(n) is the number of objects in a pile that represents a losing position in a Nim game, where a player must select at least one object but not more than half of the remaining objects, on their turn. - Kiran Ananthpur Bacche, Feb 03 2025

Examples

			a(3) = 3*2^2 - 1 = 3*4 - 1 = 11.
		

Crossrefs

Cf. A007505 for primes in this sequence. Apart from initial term, same as A052940 and A083329.
Cf. A266550 (independence number of the n-Mycielski graph).

Programs

Formula

a(n) = A118654(n-1, 4), for n > 0.
a(n) = 2*a(n-1) + 1 = a(n-1) + A007283(n-1) = A007283(n)-1 = A000079(n) + A000225(n + 1) = A000079(n + 1) + A000225(n) = 3*A000079(n) - 1 = 3*A000225(n) + 2.
a(n) = A010036(n)/2^(n-1). - Philippe Deléham, Feb 20 2004
a(n) = A099258(A033484(n)-1) = floor(A033484(n)/2). - Reinhard Zumkeller, Oct 09 2004
G.f.: x*(2-x)/((1-x)*(1-2*x)). - Philippe Deléham, Oct 04 2011
a(n+1) = A196168(A000079(n)). - Reinhard Zumkeller, Oct 28 2011
E.g.f.: (3*exp(2*x) - 2*exp(x) - 1)/2. - Stefano Spezia, Sep 14 2024

A179888 Starting with a(1)=2: if m is a term then also 4*m+1 and 4*m+2.

Original entry on oeis.org

2, 9, 10, 37, 38, 41, 42, 149, 150, 153, 154, 165, 166, 169, 170, 597, 598, 601, 602, 613, 614, 617, 618, 661, 662, 665, 666, 677, 678, 681, 682, 2389, 2390, 2393, 2394, 2405, 2406, 2409, 2410, 2453, 2454, 2457, 2458, 2469, 2470, 2473, 2474, 2645, 2646, 2649
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 31 2010

Keywords

Comments

0 -> 01 and 1 -> 10 in binary representation of n;
intersection of A032925 and A053754;
subsequence of A063037;
A000120(a(n))=A023416(a(n))=A070939(n); A070939(a(n))=2*A070939(n).

Examples

			__ n | __ bin(n) || ___ bin(a(n)) | base-4(a(n)) | __ a(n)
-----|-----------||---------------|--------------|---------
.. 1 | ....... 1 || .......... 10 | .......... 2 | ..... 2;
.. 2 | ...... 10 || ........ 1001 | ......... 21 | ..... 9;
.. 3 | ...... 11 || ........ 1010 | ......... 22 | .... 10;
.. 4 | ..... 100 || ...... 100101 | ........ 211 | .... 37;
.. 5 | ..... 101 || ...... 100110 | ........ 212 | .... 38;
.. 6 | ..... 110 || ...... 101001 | ........ 221 | .... 41;
.. 7 | ..... 111 || ...... 101010 | ........ 222 | .... 42;
.. 8 | .... 1000 || .... 10010101 | ....... 2111 | ... 149;
.. 9 | .... 1001 || .... 10010110 | ....... 2112 | ... 150;
. 10 | .... 1010 || .... 10011001 | ....... 2121 | ... 153;
. 11 | .... 1011 || .... 10011010 | ....... 2122 | ... 154;
. 12 | .... 1100 || .... 10100101 | ....... 2211 | ... 165;
. 13 | .... 1101 || .... 10100110 | ....... 2212 | ... 166;
. 14 | .... 1110 || .... 10101001 | ....... 2221 | ... 169;
. 15 | .... 1111 || .... 10101010 | ....... 2222 | ... 170;
. 16 | ... 10000 || .. 1001010101 | ...... 21111 | ... 597;
. 17 | ... 10001 || .. 1001010110 | ...... 21112 | ... 598;
. 18 | ... 10010 || .. 1001011001 | ...... 21121 | ... 601;
. 19 | ... 10011 || .. 1001011010 | ...... 21122 | ... 602;
. 20 | ... 10100 || .. 1001100101 | ...... 21211 | ... 613.
		

Crossrefs

Programs

  • Haskell
    a179888 n = a179888_list !! (n-1)
    a179888_list = 2 : f a179888_list where
      f (x:xs) = x' : x'' : f (xs ++ [x',x'']) where x' = 4*x+1; x'' = x' + 1
    -- Reinhard Zumkeller, Oct 29 2011
    
  • Maple
    a:= n-> 1+(n mod 2)+`if`(n<2, 0, 4*a(iquo(n, 2))):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jul 15 2024
  • Mathematica
    Union@ Flatten@ NestList[ {4 # + 1, 4 # + 2} &, 2, 5] (* Robert G. Wilson v, Aug 16 2011 *)
  • Python
    def A179888(n): return ((1<<(n.bit_length()<<1))-1)//3+int(bin(n)[2:],4) # Chai Wah Wu, Jul 16 2024

Formula

a(n) = 4*a(floor(n/2)) + n mod 2 + 1 for n>1;
a(n) = SUM((bit(k)+1)*4^k: 0<=k<=L), where bit() and L such that n=SUM(bit(k)*2^k: 0<=k<=L).
Showing 1-3 of 3 results.