cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196301 The number of ways to linearly order the cycles in each permutation of {1,2,...,n} where two cycles are considered identical if they have the same length.

Original entry on oeis.org

1, 1, 2, 9, 44, 270, 2139, 18837, 186808, 2070828, 25861140, 350000640, 5145279611, 81492295079, 1381583542234, 25097285838765, 484602684624080, 9894705390149400, 213418984780492164, 4842425874827849868, 115231446547162291200, 2874808892527026177240
Offset: 0

Views

Author

Geoffrey Critzer, Sep 30 2011

Keywords

Examples

			a(4) = 44 because in the conjugacy classes of S(4): (4), (3)(1), (2)(2), (2)(1)(1), (1)(1)(1)(1) there are (respectively) 6 permutations times 1 arrangement, 8 permutations times 2 arrangements, 3 permutations times 1 arrangement, 6 permutations times 3 arrangements, and 1 permutation times 1 arrangement.  So 6*1+8*2+3*1+6*3+1*1 = 44.
		

Crossrefs

Cf. A120774.
Row sums of A285849.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
          (p+n)!/n!, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
          [multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 27 2017
  • Mathematica
    Needs["Combinatorica`"]; f[{x_, y_}]:= x^y y!; Table[Total[Table[n!, {PartitionsP[n]}]/Apply[Times, Map[f, Map[Tally, Partitions[n]], {2}], 2] * Apply[Multinomial, Map[Last, Map[Tally, Partitions[n]], {2}], 2]], {n, 0, 20}]