A196301 The number of ways to linearly order the cycles in each permutation of {1,2,...,n} where two cycles are considered identical if they have the same length.
1, 1, 2, 9, 44, 270, 2139, 18837, 186808, 2070828, 25861140, 350000640, 5145279611, 81492295079, 1381583542234, 25097285838765, 484602684624080, 9894705390149400, 213418984780492164, 4842425874827849868, 115231446547162291200, 2874808892527026177240
Offset: 0
Keywords
Examples
a(4) = 44 because in the conjugacy classes of S(4): (4), (3)(1), (2)(2), (2)(1)(1), (1)(1)(1)(1) there are (respectively) 6 permutations times 1 arrangement, 8 permutations times 2 arrangements, 3 permutations times 1 arrangement, 6 permutations times 3 arrangements, and 1 permutation times 1 arrangement. So 6*1+8*2+3*1+6*3+1*1 = 44.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..444
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0 or i=1, (p+n)!/n!, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat [multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i)) end: a:= n-> b(n$2, 0): seq(a(n), n=0..25); # Alois P. Heinz, Apr 27 2017
-
Mathematica
Needs["Combinatorica`"]; f[{x_, y_}]:= x^y y!; Table[Total[Table[n!, {PartitionsP[n]}]/Apply[Times, Map[f, Map[Tally, Partitions[n]], {2}], 2] * Apply[Multinomial, Map[Last, Map[Tally, Partitions[n]], {2}], 2]], {n, 0, 20}]